
Integers

Today
! Numeric Encodings
! Programming Implications
! Basic operations
! Programming Implications

Next time
! Floats
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Encoding integers in binary

Positive integers, easy

What about negative integers?

binary to 
unsigned

Tuesday, September 27, 2011



EECS 213 Introduction to Computer Systems
Northwestern University

4

Encoding integers in binary

Idea #1: sign bit
– use 1 in the most significant (leftmost) bit like a minus 

sign
• 3 = 0011, -3 = 1011

– intuitive, but simple arithmetic is complicated
• 5 + -3 = 0101 + 1011 = a miracle occurs = 0010

Idea #2: ones' complement
– flip all bits for negatives

• 3 = 0011, -3 = 1100
– addition not too bad (just add and then add carry bit if 

any)
• 5 + -3 = 0101 + 1100 = 0001 + 1 (carry) = 0010
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Encoding integers

Both ideas lead to two representations of zero, 
positive and negative: 
– sign bit: 0000 and 1000
– ones' complement:  0000 1111
– 5 + -5 = 0101 + 1010 = 1111 = -0
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Encoding integers

Idea #3: Two’s complement
– Informal encoding view: 
– To encode –N, encode N, flip all bits, add 1

• 5 = 0101, 
• -5 = 1010 + 1 = 1011

– More formally, given w bits [xw-1, xw-2, …, x1, x0], 
• N = -(2w-1)* xw-1 + !2i * xi for i from 0 to w-2
• 1011 = -23 + 3 = -8 + 3 = -5

Addition is now simple: always add, ignore 
overflow
– 5 + -5 = 0101 + 1011 = 0000

Only one zero (why?)
Significant bit still serves as sign bit
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Encoding integers

  short int x =  15213;
  short int y = -15213;

C short 2 bytes long

Unsigned Twoʼs Complement

Sign
Bit
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Encoding example
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  x = 15213:  00111011 01101101
  y = -15213: 11000100 10010011
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Numeric ranges
Unsigned Values
– Umin = 0

• 000…0
– UMax  = 2w-1

• 111…1

Two’s Complement Values
– Tmin = –2w–1

• 100…0
– TMax = 2w–1 – 1

• 011…1
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Values for W = 16
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Values for other word sizes

Observations
– |TMin |  =  |TMax | + 1

• Asymmetric range
– UMax = 2 * TMax + 1 

  

C constants
–  #include <limits.h>
– Declares

•  ULONG_MAX
• INT_MAX, INT_MIN
•  LONG_MAX, LONG_MIN

– Values platform-specific
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Unsigned & signed numeric values

Equivalence
– Same encodings for 

nonnegative values

Uniqueness (bijections)
– Every bit pattern represents 

unique integer value
– Each representable integer has 

unique bit encoding

! Can invert mappings
– U2B(x)  =  B2U-1(x)

• Bit pattern for unsigned integer
– T2B(x)  =  B2T-1(x)

• Bit pattern for two’s comp 
integer
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X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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C allows conversions from signed to unsigned

Resulting value
– No change in bit representation
– Non-negative values unchanged

• ux = 15213
– Negative values change into (large) positive values

• uy = 50323
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  short int           x =  15213;
  unsigned short int ux = (unsigned short) x;
  short int           y  = -15213;
  unsigned short int uy = (unsigned short) y;

Casting signed to unsigned
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T2U
T2B B2U

Twoʼs Complement Unsigned

Maintain same bit pattern

x ux
X

Relation between signed & unsigned
Casting from signed to unsigned

Consider B2U and B2T equations

and a bit pattern X; compute B2U(X) – B2T(X)
weighted sum of for bits from 0 to w – 2 cancel each other

If we let
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Relation between signed & unsigned

ux = x + 216 = -15213 + 65536
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2ʼs Comp.
Range

Unsigned
Range

Conversion - graphically

2’s Comp. " Unsigned
– Ordering inversion
– Negative " Big positive

1000

0111

1111

0000
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Signed and unsigned in C

Constants
– By default are considered to be signed integers
– Unsigned if have “U” as suffix

0U, 4294967259U

Casting
– Explicit casting bet/ signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

– Implicit casting
tx = ux;
uy = ty;

– Mixed expressions – cast to unsigned first
tx + ux;
uy < ty;
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Sign extension 

Task:
– Given w-bit signed integer x
– Convert it to w+k-bit integer with same value

Rule:
– Make k copies of sign bit:
– X’=  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB
• • •X 

X # • • • • • •

• • •

w

wk
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Sign extension example

Converting from smaller to larger integer data type
C automatically performs sign extension
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  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011
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Justification for sign extension

Prove correctness by induction on k
– Induction Step: extending by single bit maintains value

– Key observation:  –2w +2w–1 = –2w–1  = 
– Look at weight of upper bits: 

• X  –2w–1 xw–1 

• X’ –2w xw–1 + 2w–1 xw–1 = –2w–1 xw–1

- • • •X 

X # - + • • •

w+1

w
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Why should I use unsigned? 

Don’t use just because number nonzero
– C compilers on some machines generate less 

efficient code
– Easy to make mistakes (e.g., casting)
– Few languages other than C supports unsigned 

integers

Do use when need extra bit’s worth of range
– Working right up to limit of word size
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Negating with complement & increment

Claim: Following holds for 2’s complement
–  ~x + 1 == -x

Complement
– Observation: ~x + x == 1111…112 == -1

Increment
– ~x + x + (-x + 1) == -1 + (-x + 1)
– ~x + 1 == -x

1 0 0 1 0 11 1 x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1
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Comp. & incr. examples

x = 15213

0
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Unsigned addition

Standard addition function
– Ignores carry output

Implements modular arithmetic
– s  = UAddw(u , v) = u + v  mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)
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0
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16

24

32
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12 13
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15

Integer Addition

Visualizing integer addition

Integer addition
– 4-bit integers u, v
– Compute true sum Add4(u , v)
– Values increase linearly with u and v
– Forms planar surface

Add4(u , v)

u
v
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Visualizing unsigned addition

Wraps around
– If true sum " 2w

– At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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Two’s complement addition

TAdd and UAdd have identical Bit-level 
behavior
– Signed vs. unsigned addition in C:
–  int s, t, u, v;
–  s = (int) ((unsigned) u + (unsigned) v);
–   t = u + v
– Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Tuesday, September 27, 2011



Functionality
– True sum requires 

w+1 bits
– Drop off MSB
– Treat remaining bits 

as 2’s comp. 
integer
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Characterizing TAdd

–2w –1

–2w

0

2w –1

2w–1
True Sum

TAdd Result

1 000…0

1 100…0

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

(NegOver)

(PosOver)
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0

2

4

6

8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
4

5 6
7

Visualizing 2’s comp. addition

Values
– 4-bit two’s comp.
– Range from -8 to +7

Wraps Around
– If sum ! 2w–1

• Becomes negative
• At most once

– If sum < –2w–1

• Becomes positive
• At most once

TAdd4(u , v)

u

v PosOver

NegOver
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Detecting 2’s comp. overflow

Task
– Given s  =  TAddw(u , v)
– Determine if s   = Addw(u , v)
– Example
–  int s, u, v;
–  s = u + v;

Claim
– Overflow iff either:

•  u, v < 0, s ! 0 (NegOver)
•  u, v ! 0, s < 0 (PosOver)

ovf = (u<0 == v<0) && (u<0 != s<0); 

0

2w –1

2w–1
PosOver

NegOver
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Multiplication

Computing exact product of w-bit numbers x, y
– Either signed or unsigned

Ranges
– Unsigned: 0 # x * y # (2w – 1) 2  =  22w – 2w+1 + 1

• May need up to 2w bits to represent
– Two’s complement min: x * y  " (–2w–1)*(2w–1–1)  =  –22w–2 + 

2w–1

• Up to 2w–1 bits
– Two’s complement max: x * y # (–2w–1) 2  =  22w–2

• Up to 2w bits

Maintaining exact results
– Would need to keep expanding word size with each product 

computed
– Done in software by “arbitrary precision” arithmetic packages
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Unsigned multiplication in C

Standard multiplication function
– Ignores high order w bits

Implements modular arithmetic
UMultw(u , v) = u   ! v  mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •
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Unsigned vs. signed multiplication

Unsigned multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

– Truncates product to w-bit number up  = 
UMultw(ux, uy)

– Modular arithmetic: up = ux * uy  mod 2w

Two’s complement multiplication
int x, y;
int p = x * y;

– Compute exact product of two w-bit numbers x, y
– Truncate result to w-bit number p  = TMultw(x, y)
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Unsigned vs. signed multiplication

Unsigned multiplication
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy

Two’s complement multiplication
int x, y;
int p = x * y;

Relation
– Signed multiplication gives same bit-level result as 

unsigned
–  up == (unsigned) p
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Operation
– u << k gives u * 2k

– Both signed and unsigned

Examples
– 3*a = a<<1 + a
– Most machines shift and add much faster than multiply (1 to 

+12 cycles)
• Compiler generates this code automatically

Power-of-2 multiply with shift
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• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k  bits

Operands: w bits

Discard k  bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••
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Unsigned power-of-2 divide with shift

Quotient of unsigned by power of 2
– u >> k gives  " u / 2k #

– Uses logical shift
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0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

$ u / 2k % •••Result:

.

Binary Point

0 •••
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Arithmetic Right Shift = Division by 2?

Compare right-shifting 3-bit 
negative numbers to dividing by 
2

-4100

101

110

111

-3

-2

-1

000

001

010

0

1

2

011 3
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Signed power-of-2 divide with shift

Quotient of signed by power of 2
– x >> k gives  " x / 2k #

– Uses arithmetic shift
– Rounds wrong direction when u < 0
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0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••
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Correct power-of-2 divide

Quotient of negative number by power of 2
– Want  $ x / 2k %    (Round Toward 0)
– Compute as  "(x+2k-1)/ 2k #

• In C: (x<0 ? (x + (1<<k) - 1) : x) >> k
• Biases dividend toward 0

Case 1: No rounding
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Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 & u / 2k  '

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k +–1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct power-of-2 divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 & x / 2k  '

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k +–1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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