Today

©® Numeric Encodings

© Programming Implications
© Basic operations

© Programming Implications

Next time
® Floats

Integers

Tuesday, September 27, 2011

Checkpoint

B B ——

[Y
E&‘ LA l AlLLIED [}
’T*l SHECKPOINT CHARLIE J

ALLIED
CHECKPOINT

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-1.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-1.key

Encoding integers in binary

* Positive integers, easy

binary to wal
unsigned B2UX) =)Y x%R
i=0

* What about negative integers?

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Encoding integers in binary

* |dea #1: sign bit

— use 1 in the most significant (leftmost) bit like a minus
sign
« 3=0011, -3 =1011
— Intuitive, but simple arithmetic is complicated
« 5+-3=0101+ 1011 = a miracle occurs = 0010

* |dea #2: ones' complement
— flip all bits for negatives
« 3=0011, -3 =1100
— addition not too bad (just add and then add carry bit if

any)
« 5+-3=0101 + 1100 = 0001 + 1 (carry) = 0010

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Encoding integers

* Both ideas lead to two representations of zero,
positive and negative:
— sign bit: 0000 and 1000
— ones' complement: 0000 1111
-5+-5=0101+1010 =111 =-0

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Encoding integers

* [dea #3: Two’'s complement
— Informal encoding view:
— To encode —N, encode N, flip all bits, add 1
- 5=0101,
« -5=1010+ 1= 1011
- More formally, given w bits [X,, 4, X,.05 -
=-(2%N)* x,,., + >2' * x; for i from 0 to w-2
. 1011 =-2+3=-8+3=-5
* Addition is now simple: always add, ignore
overflow
- 5+-5=0101+ 1011 = 0000
* Only one zero (why?)

» Significant bit still serves as sign bit

EECS 213 Introduction to Computer Systems
Northwestern University

X1, Xol,

Tuesday, September 27, 2011

Encoding integers

Unsigned Two’s Complement
w-1 . w=2 .

BRUX) = Yx»' B2T(X) = -x,,R""+ Yx 2
i=0 i=0

Sign
Bit
C short 2 bytes long
short int x = 15213;
short int y = -15213;
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Encoding example

x = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -156213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Numeric ranges

* Unsigned Values * Two’'s Complement Values

— Umin=0 — Tmin = =2w-1
« 000...0 100...0
_ UMax = 2W-1 — TMax =2%-1—- 1
e 111.. .1 « 011...1
Values for W= 16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 0 00 OO OO0O0O00O00 00000000

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Values for other word sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
* Observations C constants
— |TMin| = |TMax |+ 1 — #include <limits.h>
« Asymmetric range — Declares
— UMax = 2* TMax+ 1 ¢ ULONG MAX

« INT MAX, INT MIN
« LONG_MAX, LONG MIN

— Values platform-specific

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsignhed & signed numeric values

X * Equivalence
0000 — Same encodings for
0001 nonnegative values
8812 * Uniqueness (bijections)
0100 — Ev_ery b_it pattern represents
0101 unique integer value
0110 — Each representable integer has
0111 unique bit encoding
1000 8 -8 « = Can invert mappings
7 — U2B(x) = B2U"(x)
1011 11 5 - Bit pattern for unsigned integer
1100 12 _4 — TZB(X) - BZT'1(X)
1101 13 -3 . Bit pattern for two’s comp
1110 14 o integer
1111 15 —1

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Casting signhed to unsigned

* C allows conversions from signed to unsigned

short int x = 15213;

unsigned short int ux = (unsigned short) x;
short int y = -15213;

unsigned short int uy = (unsigned short) y;

* Resulting value
— No change in bit representation

— Non-negative values unchanged
e ux=15213

— Negative values change into (large) positive values
« uy =50323

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Relation between signed & unsigned

Casting from signed to unsigned

Two’s Complement T2U Unsigned
X —| T2B|—| B2U > ux
X

Maintain same bit pattern
Consider B2U and B2T equations

w-1) w=2 i
B2UX) = Y x %' B2T(X) = -x,,R""+ Yx 2
=0

i=0
and a bit pattern X; compute B2U(X) — B2T(X)
weighted sum of for bits from 0 to w — 2 cancel each other

B2U(X)-B2T(X)=x,,(2""'--2""=x 2"
B2U(X)=x, 2"+ B2T(X)

If we let B2T(X)=x
B2U(T2B(x))=T2U(x)=x,,2" +x

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Relation between signed & unsigned

T2U(x)=x,,,2" +x

Weight -15213 50323

1 1 1 1 1
2 1 2 1 2
4 0 0 0 0
8 0 0 0 0
16 1 16 1 16
32 0 0 0 0
064 0 0 0 0
128 1 128 1 128
256 0 0 0 0
512 0 0 0 0
1024 1 1024 1 1024
2048 0 0 0 0
4096 0 0 0 0
8192 0 0 0 0
16384 1 16384 1 16384
32768 1 -32768 1 32768
Sum -15213 50323

ux=x+ 216 =-.15213 + 65536

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Conversion - graphically

* 2's Comp. — Unsigned

— Ordering inversion
— Negative — Big positive

2’s Comp.
Range

1111 UMax
UMax — 1
TMax|© *O| TMax
0000
o [© 0| 0 _
—1
-2
_TMin 1000

EECS 213 Introduction to Computer Systems
Northwestern University

Unsigned
Range

Tuesday, September 27, 2011

Signed and unsigned in C

* Constants

— By default are considered to be signed integers
— Unsigned if have “U” as suffix
0U, 4294967259U
* Casting
— Explicit casting bet/ signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;
— Implicit casting

tx = ux;

uy = tyy;

— Mixed expressions — cast to unsigned first
tx + ux;
uy < tyy;

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Sign extension
* Task:

— Given w-bit signed integer x

— Convert it to w+k-bit integer with same value
* Rule:

— Make k copies of sign bit:

— X'= Xpyq e Xpgeq s Xyt s Xz 1+ -5 Xg
| J
: < w >
k copies of MSB
X . [] [] []

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Sign extension example

* Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x = 15213;

int - ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
1x 15213 00 00 3B 60 00000000 00000000 00111011 01101101
Y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

EECS 213 Introduction to Computer Systems

Northwestern University

Tuesday, September 27, 2011

Justification for sign extension

* Prove correctness by induction on k
— Induction Step: extending by single bit maintains value

_2 <€ W >
B2T(X) = —xw_1><2w_1+2xix2i x [E —
=0
v Yvyy vV vyy
X' [EHE ——
<« Wil ——>

— Key observation:

—2W 4$2w-1=_2w-1

— Look at weight of upper bits:

« X
e X

_ow-1
291 X 1

- —1 = _2ow-1
A AP A LD W ZARLD S

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Why should I use unsigned?

* Don’t use just because number nonzero

— C compilers on some machines generate less
efficient code

— Easy to make mistakes (e.g., casting)

— Few languages other than C supports unsigned
integers

* Do use when need extra bit's worth of range
— Working right up to limit of word size

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Checkpoint

B I c—

S
E& 7] I ALLIED [
”:*l HECKPOINT CHARLIE J

o |

.
.....

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-2.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-2.key

Negating with complement & increment

* Claim: Following holds for 2’s complement
— ~X + == X

* Complement
— Observation: ~x + x == 1111...11, == -

X |1|0]0]1]1]|1|0]1

+ ~x |0]1f1]|0]/0|0O|1]|0

-1 |1]1)2f2|1]1|2f2

* |[ncrement
—~x+/y< /+1 ==- +(-x+)/)
— ~X+ == =X

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Comp. & incr. examples

X =15213
Decimal| Hex Binary
X 15213 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010
~x+1 | -15213| C4 93| 11000100 10010011
Y -15213| C4 93| 11000100 10010011
0
Decimal Hex Binary
0 O] 00 00| 00000000 00000000
~0 -1 FF FF| 11111111 11111111
~0+1 0 00 00] 00000000 00000000

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsigned addition

* Standard addition function
— Ignores carry output
* Implements modular arithmetic

—S = UAdd,(u,Vv)=u+v mod 2%
Operands: w bits “

+
True Sum: w+1 bits u+v

Discard Carry: w bits UAdd (u ,v)

u+v,u+v<2”

U+w=2"2"<sx+y<2"

UAdd , (u,v) = {

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Visualizing integer addition

* Integer addition
— 4-bit integers u, v
— Compute true sum Add4(u , v)
— Values increase linearly with u and v
— Forms planar surface

Integer Addition

Add,(u, v)

32

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Visualizing unsigned addition

* Wraps around

— |f true sum = 2w
— At most once

Overflow

UAdd,(u , v)

True Sum 1"
2w+l T
Overflow
v b\
—_—
o - I v

Modular Sum

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Two’s complement addition
* TAdd and UAdd have identical Bit-level

behavior
— Signed vs. unsigned addition in C:
— ints, t, u, v;
— s = (int) ((unsigned) u + (unsigned) v);
— t=u+v
— Will give s ==
Operands: w bits “
+ Vv
True Sum: w+1 bits u+v [
Discard Carry: w bits TAdd (u ,v)

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Characterizing TAdd

* Functionality
— True sum requires

True Sum
01111 ou_q T

w+1 bits PosOver
—_ Drop off MSB TAdd Result
. . 0100..0 ow-1+ T o011..1
— Treat remaining bits
as 2’s comp. 0000, 0
integer O T T 000...0
1100...0 _pw-1 ¢ + 100...0
1000...0 —2w 1 NegOver
(u+v+2"7 u+v <TMin,, (NegOver
TAdd,,(u,v) = {u+v TMin,, <u+v <TMax,,

u+v-2"""" TMax, <u+v (PosOver

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Visualizing 2's comp. addition

* Values
— 4-bit two’s comp.
— Range from -8 to +7
* Wraps Around TAdd,(u, v)
— If sum = 2w-1
« Becomes negative
« At most once
— If sum < -2w-1
« Becomes positive
« At most once

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Detecting 2's comp. overflow
* Task

— Given's = TAddw(u , v) 217 ocOver

— Determine if s = Addw(u , v) pwr]

— Example

— Ints, u, v; 0

— S=u+tv,;

* Claim

— Overflow iff either: 1 NegOver
. uv<0,s=0 (NegOver)
. uv=0,s<0 (PosOver)

ovi = (u<0 == v<0) && (u<0 != s<0);

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Checkpoint

B I c—

S
E& 7] I ALLIED [
”:*l HECKPOINT CHARLIE J

o |

.
.....

Tuesday, September 27, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-3.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/03-Integers-quiz-3.key

Multiplication

* Computing exact product of w-bit numbers x, y
— Either signed or unsigned

* Ranges

— Unsigned: 0 s x*y<(2v—1)2 = 22w _ 2w+l + 1
« May need up to 2w bits to represent

— Two’s complement min: x *y = (=2w-1)*(2¥-1-1) = —22w-2 +

2w—1

« Up to 2% bits

— Two’s complement max: x *y < (=2w-1) 2 = 22w-2
* Up to 2w bits

* Maintaining exact results

— Would need to keep expanding word size with each product
computed

— Done in software by “arbitrary precision” arithmetic packages

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsigned multiplication in C

Operands: w bits

u

True Product: 2*w bits *)

v v CIT e e e

Discard w bits: w bits

UMult, (u , v)

» Standard multiplication function
— Ignores high order w bits

* Implements modular arithmetic
UMult (u,v)=u -v mod 2%

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsigned vs. sighed multiplication

* Unsigned multiplication

unsigned ux = (unsigned) Xx;
unsigned uy = (unsigned) vy;
unsigned up = ux * uy

— Truncates product to w-bit number up =
UMult, (ux, uy)

— Modular arithmetic: up = ux * uy mod 2%
* Two’'s complement multiplication

int x, y;

int p = x * vy;

— Compute exact product of two w-bit numbers X, y
— Truncate result to w-bit number p = TMultw(Xx, y)

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsigned vs. sighed multiplication

* Unsigned multiplication

unsigned ux = (unsigned) Xx;
unsigned uy = (unsigned) vy;
unsigned up = ux * uy

* Two’'s complement multiplication

int x, vy
int p = x * vy;
* Relation

— Signed multiplication gives same bit-level result as
unsigned

— up == (unsigned) p

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Power-of-2 multiply with shift

* Operation
- u << kgivesu * 2k
— Both signed and unsigned

v O~ 1111

Operands: w bits

* 2k O LI) 0.0 LI) O

True Product: w+k bits »-2« [T s e e POl <+« 0

UMult, (u , 2¢) e I O] « =~]0

TMult, (u , 2%)

Discard k bits: w bits

* Examples
- 3*%a = a<kl + a

— Most machines shift and add much faster than multiply (1 to
+12 cycles)

« Compiler generates this code automatically

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Unsigned power-of-2 divide with shift

* Quotient of unsigned by power of 2
- u >> kgives |u / 2k|]
— Uses logical shift

k
u -« T TI===TT1 BinaryPoint
Operands: /

/ 2k O LI 0.0 L OO

Division: w2k XX XX _

Result: | u /2|
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
X >> 1 7606.5 7606 1D B6| 00011101 10110110
X >> 4 950.8125 950 03 Be6| 00000011 10110110
x >> 8 | §9.4257813 99 00 3B| 00000000 00111011

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Arithmetic Right Shift = Division by 27

* Compare right-shifting 3-bit
negative numbers to dividing by
2

100 -4
101 -3
110 -2
111 -1
000 0
001 1
010 2
011 3

Tuesday, September 27, 2011

Signed power-of-2 divide with shift

* Quotient of signed by power of 2
- x >> kagives | x / 2kK]
— Uses arithmetic shift
— Rounds wrong direction whenu < 0

k
x OO T---T FSseT Binary Point

Operands:
/ 2k O e 00 0.0 e 00 O O /
Division: BTSN | 8 o
Result: RoundDown(x/2¢) LI === T TT T «--
Division Computed Hex Binary

Y -15213 -15213 cC4 93] 11000100 10010011
y >> 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Correct power-of-2 divide

* Quotient of negative number by power of 2
— Want [x / 2k] (Round Toward 0)
— Compute as | (x+2k-1)/ 2k|
e INC: (x<0 ? (x + (1<<k) - 1) : x) >> k
- Biases dividend toward O

¢ Case 1: No rounding

Dividend: u 1 Of e+« [0]O
+2k+_1 0 oo e 0101 1 oo e 111

1 XK 1 XX 111 Blnary POlnt
Divisor: / 2c [O] <<« JO[EJO[=++ JOJO /

[w/2¢] [=< [[== T

Biasing has no effect

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

Correct power-of-2 divide (Cont.)

Case 2: Rounding

Dividend: x [T ---TTT===TT1

+2k+_1 0 oo e Oo1011 oo e 111

\\ J
Y
Incremented by 1 Binary Point
Divisor: / 2k [O] s« TO[EJO[++-T0JO /
|-x/2k-| 1 e oo 11111 e oo 4 'O
\\ J
Y

Biasing adds 1 to final result Incremented by 1

EECS 213 Introduction to Computer Systems
Northwestern University

Tuesday, September 27, 2011

