Machine-Level Programming — Introduction

Today

® Assembly programmer’s exec model

K2Z0E s - I :
5.-// ‘ :\\@ Accessing information
=(E(F=E)g)m m Arithmetic operations
L)\ '.5 = :,' s
C rrm\\ [~ .

z\\ /S Next time

U85\

® More of the same

Fabian E. Bustamante, Spring 2007

Monday, October 10, 2011

IA32 Processors

» Totally dominate computer market

* Evolutionary design
— Starting in 1978 with 8086
— Added more features as time goes on
— Backward compatibility: able to run code for earlier version

* Complex Instruction Set Computer (CISC)

— Many different instructions with many different formats
« But, only small subset encountered with Linux programs

— Hard to match performance of Reduced Instruction Set
Computers (RISC)

— But, Intel has done just that!

» X86 evolution clones: Advanced Micro Devices (AMD)

— Historically followed just behind Intel — a little bit slower, a lot
cheaper

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

X86 Evolution: Programmer’s view

Name Date Transistors | Comments

8086 1978 29k 16-bit processor, basis for IBM PC & DOS; limited to
1MB address space

80286 1982 134K Added elaborate, but not very useful, addressing
scheme; basis for IBM PC AT and Windows

386 1985 275K Extended to 32b, added “flat addressing”, capable of
running Unix, Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro 1995 6.5M Added conditional move instructions; big change in

(P6) underlying microarchitecture

Pentium/ 1997 6.5M Added special set of instructions for 64-bit vectors of 1,

MMX 2, or 4 byte integer data

Pentium | 1997 ™ Merged Pentium/MMZ and PentiumPro implementing
MMX instructions within P6

Pentium I 1999 8.2M Instructions for manipulating vectors of integers or
floating point; later versions included Level2 cache

Pentium 4 2001 42M 8 byte ints and floating point formats to vector

instructions

EECS 213 Introduction to Computer Systems

Northwestern University

Monday, October 10, 2011

X86 Evolution: Programmer’s view

Name Date Transistors | Comments

Pentium 4E 2004 125M Hyperthreading (execute 2 programs on one processor),
EMG4T 64-bit extension

Core 2 2006 291M first multi-core; similar to P6; no hyperthreading

Core i7 2008 781M multi-core with hyperthreading; 2 programs on each

core, up to 4 cores per chip;

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Assembly programmer’s view

CPU Memory
Addresses
- > Object Code
Program Data
- < Data > OS Data
- Instructions
a
Stack
* Programmer-Visible State
— %eip Program Counter
* %rip in 64bit
« Address of next instruction * Memory
— Register file (8x32bit) — Byte addressable array
» Heavily used program data — Code, user data, (some) OS

— Condition codes data

 Store status information about — Includes stack used to
most recent arithmetic operation support procedures

» Used for conditional branching
— Floating point register file

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Turning C into object code

* Code in files p1.c p2.c

* Compile with command: gcc -02 pl.c p2.c -o p
— Use level 2 optimizations (-O2); put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

1 Compiler (gcc -9S)

Asm program (pl.s p2.s)

1 Assembler (gcc or as)

Object program (pl.o p2.0)

Static libraries

(.a)

Linker (gcc or 1d) 1 /

Executable program (p)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Compiling into assembly

code.c (C source)

int sum(int x, int y)

{
int t = x+y; [:i>

return t;
} gcc -S code.c -01

Text ﬂ

ode.s (GAS Gnu Assembler)
sum:
Grdinary text file pushl %ebp

movl %esp, sebp
movl 12 (%ebp) , $eax
addl 8 (%ebp) , seax

might see opl %ebp

|
"leave" j/ ret

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Assembly characteristics

* gcc default target architecture: 1386 (flat addressing)

* Minimal data types
— “Integer” data of 1, 2, or 4 bytes
» Data values or addresses
— Floating point data of 4, 8, or 10 bytes

— No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

* Primitive operations
— Perform arithmetic function on register or memory data
— Transfer data between memory and register
» Load data from memory into register
« Store register data into memory
— Transfer control
» Unconditional jumps to/from procedures
» Conditional branches

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Object code

Code for sum * Assembler
0x401040 — Translates .s into .o
<sum>: 0x55 . .
0x89 — Binary encoding of each
0xe5 Instruction
0x8b _ _ _
oxas L9cc-ccodec-O1| _ Nearly-complete image of
0x0c exec code
0x03 .
0x45 — But unresolved linkages
gxgg between code in different files,
Oxon such as function calls
0x5d
Oxc3

+ Total of 13 bytes
+ Each instruction 1, 2, or 3 bytes
- Starts at address 0x401040

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Getting an executable

* To generate an executable requires the linker

— resolves references between files, e.g., function
calls, including to library functions like printf ()

— dynamic linking leaves references for resolution at
run-time

— checks that there is one and only one main ()
function

gcc -0 code.o main.c -O1 : :
int main|()

{

return sum(1l, 3);

}

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Machine instruction example
*C Code

int t = x+y; — Add two signed integers

* Assembly
— Add 2 4-byte integers
* “Long” words in GCC parlance

« Same instruction whether signed or
unsigned

addl 8 (%ebp) , $eax

Similar to C expression
X += y — Operands:

x: Register $eax
y: Memory M[%ebp+8]
t: Register $eax
— Return function value in $eax

* Object code

0x401046: 03 45 08 — 3-byte instruction
— Stored at address 0x401046

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Disassembling object code

Disassembled

00401040 < _sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, sebp
3: 8b 45 Oc mov Oxc (%ebp) , 3eax
6: 03 45 08 add 0x8 (%ebp) , seax
9: 89 ec mov %ebp, $esp
b: 5d pop sebp
c: c3 ret
d: 8d 76 00 lea 0x0 (%esi) , $esi

* Disassembler
— objdump -d code (otool -tV on MacOS X)
— Useful tool for examining object code
— Analyzes bit pattern of series of instructions
— Produces approximate rendition of assembly code
— Can be run on either a.out (complete executable) or .o file

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Alternate disassembly

Object Disassembled
0x401040: 0x401040 <sum>: push sebp
0x55 0x401041 <sum+1l>: mov %esp, %sebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , $eax
Oxe5 0x401046 <sum+6>: add 0x8 (%ebp) , seax
0x8b 0x401049 <sum+9>: mov %ebp, sesp
0x45 0x40104b <sum+1l1>: pop %ebp
0xOc 0x40104c <sum+1l2>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) ,%esi
0x45
0x08 o
0x89 * Within gdb debugger
82‘5*3 — Once you know the |éngth of sum using
0xc3 the dissambler
\ — Examine the 13 bytes starting at sum
gdb code.o
x/13b sum

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Data formats

* “word” — (Intel) 16b data type (historical)
— 32b — double word
— 64b — quad words

* In GAS, operator suffix indicates word size involved.

* The overloading of “I" (long) OK because FP involves
different operations & registers

C decl Intel data type GAS suffix | Size (bytes)
char Byte b 1

short Word w 2

int, unsigned, Double word I 4

long int,

unsigned long,

char *

float Single precision S 4

double Double precision I 8

long double Extended precision |t 10/12

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Registers

» Eight 32bit registers

* First six mostly general 31 15 87 0
purpose $eax %ax ||%ah %al

* Last two used for secx %cx [[sch 5cl
process stack cedne ax oo T ear |

* First four also support sebx __ %bx |%bh —
access to low order

2esi %si
bytes and words i
sedi ®di

Stack pointer

Frame pointer

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Instruction formats

* Most instructions have 1 or 2 operands

— operator [source[, destination]]
— Operand types:

« Immediate — constant, denoted with a “$” in front
» Register — either 8 or 16 or 32bit registers
 Memory — location given by an effective address

— Source: constant or value from register or memory
— Destination: register or memory

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Operand specifiers

* QOperand forms
— Imm means a number
— E_ means a register form, e.g., %eax
— Sis 1, 2,4 or 8 (called the scale factor)

— Memory form is the most general; subsets also work, e.g.,
» Absolute: Imm = M[Imm]

. Base + displacement: Imm(E,) = M[Imm + R[E,]]

* Operand values
— RI[E_] means "value in register"

— M]loc] means "value in memory location /oc"

Type Form Operand value Name
Immediate | $/mm Imm Immediate
Register E, RIE,] Register
Memory Imm (E,, E;, s) | M[Imm + R[E,] + R[E] * 5] Scaled indexed

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Operand specifiers

— Memory form has many subsets

« Don’t confuse $/mm with Imm, or Ea with (Ea)

Type Form Operand value Name

Memory Imm M[Imm] Absolute

Memory (E,) MIRIE,]] Indirect

Memory Imm (E,) M[/mm + R[E,]] Base + displacement
Memory (E,, E) MI[R[E,] + RIE]] Indexed

Memory Imm (E,, E) M[/mm + R[E,] + R[E]] Indexed

Memory (,EyS) MI[RIE] * s] Scaled indexed
Memory Imm (, E;, s) M[/mm + R[E] * s] Scaled indexed
Memory (E, Ej,) MI[R[E,] + R[E] * 5] Scaled indexed
Memory Imm (E,, E;, s) | M[Imm + R[E,] + R[E] * 5] Scaled indexed

EECS 213 Introduction to Computer Systems

Northwestern University

Monday, October 10, 2011

Checkpoint

I Bl —

gen
a1 N

ALLIED [
SHECKPOINT CHARLIE J
L . ¥

E T
ALLIED
CHECKPOINT

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-operand-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-operand-quiz.key

Moving data

* Among the most common instructions

* |A32 restriction — cannot move from one memory location to
another with one instruction

* Note the differences between movb, movsbl and movzbl

* Last two work with the stack

pushl S%$ebp = subl $4, %esp
movl %ebp, (%esp)

* Since stack is part of program mem, you can really access all

Instruction Effect Description
movi{l,w,b} S,D|[D«S Move double word, word or byte
movsbl S,D D < SignExtend(S) Move sign-extended byte
movzbl S,D D «— ZeroExtend(S) Move zero-extended byte
pushl S R[%esp] < R[%esp] — 4; Push S onto the stack
M[R[%esp]] < S
popl D D «— M[R[%esp]] Pop S from the stack
R[%esp] — R[%esp] + 4;

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

mov1 operand combinations

Source Destination C Analog

—

r Reg movl $0x4,%eax temp = 0x4;

-
Imm Mem movl $-147, (%eax) *p = -147;

“—

—

Reg movl %eax,%edx temp2 = templ;

movl < Reg <

Mem movl %eax, (%$edx) *p = temp;

Mem Reg movl (%eax) ,%edx temp = *p;
\.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Using simple addressing modes

Declares xp as being
a pointer to an int

]

{
int t0 = *
int t1 = *
*xp = tl1;
*yp = tO0;
}

void swap (int *xp, int *yp)

1~

swap:
pushl %ebp
movl %esp, sebp

pushl %ebx

movl
movl
movl

Read value stored in
location xp and store it in tO

movl
movl
movl

movl
movl

popl
ret

8 ($ebp) , sedx
12 (%ebp) , $ecx
(%ecx) , $eax
(%edx) , $ebx
%eax, (%edx)
%$ebx, (%$ecx)

—4(%ebp),%ebx\

%ebp, sesp
%ebp

EECS 213 Introduction to Computer Systems
Northwestern University

Set
Up
N

> Body

/

> Finis

Monday, October 10, 2011

Address

Understanding swap >3 ox124
456 0x120
void swap (int *xp, int *yp) Oxlle
{ 0x118
int t0 = *xp;
int t1 = *yp Offset 0x114
*xp = t1; YP 12 | 0x120 | ox110
* — o
yp = tO0;
} Xp 8 0x124 O0x10c
4 Rtn adr 0x108
sebp — 0 |0ld %ebH (x104
Register Variable -
secx yp 4 |0ld %ebA ox100
sedx Xp movl 12 (%ebp), %ecx # ecx = yp
%eax tl movl 8 (%ebp) ,%edx # edx = xp
%ebx t0 movl (%ecx),%eax $ eax = *yp (tl1)
movl (%edx), %$ebx # ebx = *xp (tO0)
movl %eax, (%$edx) # *xp = eax
movl %ebx, (%ecx) # *yp = ebx

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Understanding swap

$eax

$edx

$ecx

$ebx

$esi

$edi

movl
movl
movl
movl
movl
movl

Offset

YpP 12

Xp 8

4

%ebp — 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , seax # eax
(%edx) , $ebx # ebx
%eax, (%$edx) # *xp
%$ebx, (%ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 O0x10c
Rtn adr 0x108
0x104
0x100
= yP
= *yp (tl)
= *xp (t0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

$eax

$edx

$ecx 0x120

$ebx

$esi

$edi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%edx) # *xp
%ebx, (%$ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (tO0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

$eax

$edx

0x124

$ecx

0x120

$ebx

$esi

$edi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%edx) # *xp
%ebx, (%$ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (tO0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

Feax 456
edx| 0x124
Fecx 0x120
sebx
zesi
Fedi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%edx) # *xp
%ebx, (%$ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (tO0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

%eax 456
edx| 0x124
Fecx 0x120
$ebx 123
zesi
Fedi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%edx) # *xp
%ebx, (%$ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

123 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (t0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

%eax 456
edx| 0x124
Fecx 0x120
$ebx 123
zesi
Fedi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%$edx) # *xp
%ebx, (%$ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

456 0x124
456 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (tO0)
= eax
= ebx

Monday, October 10, 2011

Understanding swap

%eax 456
edx| 0x124
Fecx 0x120
$ebx 123
zesi
Fedi

movl
movl
movl
movl
movl
movl

Offset

YP 12
Xp 8
4

%$ebp —/ 0

-4
12 (%ebp) ,%ecx # ecx
8 (%ebp) ,%edx # edx
(%ecx) , %eax # eax
(%$edx) , $ebx # ebx
%eax, (%edx) # *xp
%ebx, (%ecx) # *yp

EECS 213 Introduction to Computer Systems
Northwestern University

Address

456 0x124
123 0x120
Oxllc
0x118
0x114
0x120 0x110
0x124 0x10c
Rtn adr 0x108
0x104
0x100
= YP
= *yp (tl)
= *xp (tO0)
= eax
= ebx

Monday, October 10, 2011

Checkpoint

I Bl —

gen
a1 N

ALLIED [
SHECKPOINT CHARLIE J
L . ¥

E T
ALLIED
CHECKPOINT

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-decode-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-decode-quiz.key

Address computation instruction

¢ leal S,D D « &S
- leal = Load Effective Address
- s Is address mode expression
— Set p to address denoted by expression

* Uses
— Computing address w/o doing memory reference
* E.g., translation of p = &x]i];

— Computing arithmetic expressions of form x + k*y
k=1, 2,4, or8.
leal 7 (%edx, %edx,4), %eax
— when %edx=x, $eax becomes 5x+7

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Checkpoint

I Bl —

gen
a1 N

ALLIED [
SHECKPOINT CHARLIE J
L . ¥

E T
ALLIED
CHECKPOINT

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-address-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-address-quiz.key

Some arithmetic operations

Instruction Effect Description

incl D D—D+1 Increment

decl D D—D-1 Decrement

negl D D—-D Negate

notl D D« ~D Complement

addl S,D D—~D+S Add

subl S,D D—~D-S Subtract

imull S,D D—~D*S Multiply

xorl §,D D—DA”S Exclusive or

orl §,D D—~D|S Or

andl S,D D—~D&S And

sall k,D D~ D<<k Left shift, 0 < k < 31, Imm or %cl
shll k,D D—D=<<k Left shift (same as sall)
sarl kD D—D>>k Arithmetic right shift
shrl k,D D—D>>k Logical right shift

EECS 213 Introduction to Computer Systems

Northwestern University

Monday, October 10, 2011

Checkpoint

A O Bl e— -
L | |
=17 N/
(o —_

A N

ALLIED i
l SHECKPOINT CHARLIE |
a . ¥

E T
ALLIED
CHECKPOINT

Monday, October 10, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-arith-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/05-MachLevelProg-arith-quiz.key

Using 1ea1 for arithmetic expressions

arith:
pushl %ebp]»
int arith movl %esp, $ebp ﬁet
(int x, int y, int z) P
{ movl 8 (%ebp) ,%eax N
int tl = x+y; movl 12 (%ebp) ,%edx
int t2 = z+tl; leal (%edx,%eax),%ecx
int t3 = x+4; leal (%edx,%edx,2),%edx
int t4 = y * 48; sall $4,%edx > Body
int t5 = t3 + t4; addl 16(%ebp),%ecx
int rval = t2 * t5; leal 4 (%edx,%eax) ,%eax
return rval; imull %ecx, %eax
} movl %ebp, %esp 7
popl %ebp ~
ret ~ Finish

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Understanding arith

int arith y

(int x, int y, int z) . Stack
{ °

int t1 = x+y; Offset

:!.nt t2 = z+tl; 16 z

int €3 = x+4;

int t4 = y * 48; 12 y

int t5 = t3 + t4;

int rval = t2 * t5; 8
} return rval; 4 Rtn adr

0 | Old %ebp[+— %ebp

movl 8 (%ebp) , $eax # eax = x

movl 12 (%ebp) , %edx # edx = y

leal (%edx, %eax), %ecx # ecx = x+y (tl)
leal (%edx,%edx,2) ,%edx # edx = 3*y

sall $4,%edx # edx = 48*y (t4)
addl 16 (%ebp) , %ecx # ecx = z+tl (t2)
leal 4 (%edx, %eax) , %eax # eax = 4+td+x (t5)
imull %ecx, %$eax # eax = t5*t2 (rval)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Another example

logical.:
int logical(int x, int y) pushl %ebp :}-SetUp
{ movl %esp, %sebp
int t1 = x*y;
int t2 = tl1 >> 17; movl 12 (%$ebp) , $eax)
int mask = (1<<13) - 7; xorl 8 (%ebp) , %eax
int rval = t2 & mask; sarl $17,%eax > Body
return rval; andl $8185, %eax
-
}
movl %ebp, %esp -
popl %ebp > Finish
ret

mask 213 = 8192, 213 -7 = 8185

movl 8 (%ebp) , $eax eax = X

xorl 12 (%ebp) , %eax eax = x%y (tl)
sarl $17, %eax eax = t1>>17 (t2)
andl $8185, %eax eax = t2 & 8185

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

CISC Properties

* Instruction can reference different operand types
— Immediate, register, memory

* Arithmetic operations can read/write memory

* Memory reference can involve complex computation
— Rb+ S*Ri+D
— Useful for arithmetic expressions, too

* |nstructions can have varying lengths
— |A32 instructions can range from 1 to 15 bytes

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

Whose assembler?

Intel/Microsoft Format GAS/Gnu Format

lea eax,[ecx+tecx*2] leal (%ecx,%ecx,2),%eax
sub esp,8 subl $8,%esp

cmp dword ptr [ebp-8],0 cmpl $0,-8 (%ebp)

mov eax,dword ptr [eax*4+100h] movl $0x100(, %eax,4),%eax

» |ntel/Microsoft Differs from GAS

— Operands listed in opposite order
mov Dest, Src movl Src, Dest

— Constants not preceded by ‘$’, Denote hex with ‘h’ at end
100h $0x100

— Operand size indicated by operands rather than operator suffix
sub subl

— Addressing format shows effective address computation
[eax*4+100h] $0x100 (, %eax, 4)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, October 10, 2011

