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Cache memories

* Cache memories are small, fast SRAM-based
memories managed automatically in hardware.
— Hold frequently accessed blocks of main memory

* CPU looks first for data in L1, then in L2, then in main
memory.

* Typical bus structure:

CPU chip
register file
L1 —/ aLu
cache % |

cache bus @ : system bus memory bus
\ // IO l main
2cachd ) busintertace [, WO (T main
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Measuring Cache Effects

* Memory mountain test code

— Measures read throughput as a function of spatial
and temporal locality.

— Read throughput (read bandwidth) = Number of
bytes read from memory per second (MB/s)

— Graph throughput over changes in stride and
working set size (number of repeatedly referenced
locations)

— Compact way to characterize memory system
performance.
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Memory mountain main routine

/* mountain.c - Generate the memory mountain. */

#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */

#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof (int)

int data[MAXELEMS] ; /* The array we'll be traversing */

int main()

{

int size; /* Working set size (in bytes) */
int stride; /* Stride (in array elements) */
double Mhz; /* Clock frequency */

init data(data, MAXELEMS); /* Initialize each element in data to 1 */
Mhz = mhz (0) ; /* Estimate the clock frequency */
for (size = MAXBYTES,; size >= MINBYTES,; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++)

printf ("$.1£f\t", run(size, stride, Mhz));

printf ("\n") ;
}
exit (0);
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Memory mountain test function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; i < elems; i += stride)
result += datal[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof (int);

test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
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The memory mountain
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Ridges of temporal locality

* Slice through the memory mountain with stride=1
— illuminates read throughputs of different caches and memory
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A slope of spatial locality

* Slice through memory mountain with size=256KB
— shows cache block size.
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Direct-mapped cache

* Simplest kind of cache

* Cache divided in S sets of N-byte blocks
— N=2b, S=2s
— Typically, N = 32 or 64 (our examples use 4 bytes)
— Blocks capture spatial locality

» Valid bit = 1 if data in stored in set i
» Tag field identifies which address is currently stored

set 0:{ |valid tag cache block
set 1:[ |valid tag cache block
set S-1; |valid tag cache block
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Accessing direct-mapped caches

* Low b bits determine block offset
* Middle s bits of address determine index set
* Store remaining t bits in tag

set 0:| |valid tag cache block
selected set | set 1:‘ valid tag cache block ‘
tbits / sbits \ b bits :
00001 set S-1; |valid tag cache block

m1  tag set index block offset®
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Accessing direct-mapped caches

Example: 16 bit addresses, 8 tag=10 s=3 b=3
sets, 8 byte block in each set XXX | xxx | xxx

To store || 1011 0011 0101 1101
1011001101011 | 101

000
001
010
011] [1] 1011001101 |
100
101
110
111
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Checkpoint
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Why use middle bits as index?
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* High-order bit indexing
— Adjacent memory lines would
map to same cache entry

— Spatially local code would
have more cache conflicts

* Middle-order bit indexing

— Consecutive memory lines
map to different cache lines

— Can hold C-byte region of
address space in cache at one
time
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Set associative caches

* Characterized by more than one line per set

cache block

set O: E=2 lines per set

cache block
cache block

set 1:

cache block

cache block
cache block

set S-1:
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Accessing direct-mapped caches

* Line matching and word selection

— Line matching: Find a valid line in the selected set
with a matching tag

— Word selection: Then extract the word

=1? (1) The valid bit must be set

0 1 2 3 4 5 6 7
selected set (i): | 1 | | o110 | I_v'v0 w,| w, | w, I
(2) The tag bits in the cache 3) If (1) and (2). the
line must match the =7 ©) (c;che r(lit),
tag bits in the address and block of-,fset
A A
r — i r N selects
t bits s bits b bits .
0110 i 100 starting byte.
™1 tag set index block offset®
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General org of a cache memory

1 valid bit ttag bits B = 2b bytes

Cache is an array per line  per line per cache block
of sets. — — — ~
Each set contains ‘o E lines
one or more lines. setu: vaid [ tag per set
Each line holds a ’
block of data. m m
set 1:

=2 set vaid [ _tag
Cache size: m
C=SxExB _
data bytes set 5-1: g
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Accessing set associative caches

* Set selection
— Identical to direct-mapped cache

valid tag cache block

set 0:
valid tag cache block
valid ta cache block

Selected set . 1. g

valid tag cache block
A valid tag cache block

. . . _1 .
tbits 7 5 3 t(’)'t: . ) bbits  SetS valic tag cache block

™1 tag set index block offsét
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Accessing set associative caches

* Line matching and word selection

— must compare the tag in each valid line in the
selected set.

=1? (1) The valid bit must be set.

[ 0 1 2 3 4 5 6 7
1 1001
selected set (i): m | 5110 | I AR ETET I
(2) The tag bits in one oo (3) If (1z1anhc"t(2), ‘tjhen
of the cache lines must = b Cakc eﬁ I’;anl t
match the tag bits in J\ [‘ OCt ?_ Seb Ste ects
the address , N B § starting byte.
t bits s bits b bits
0110 i 100
"1 tag set index block offset’
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Addressing caches

Address A:
t bits s bits b bits
m-1 0
\'"/ tag 0 1 oo B—1| \ )\ JN )
set 0: 0oc Y Y Y
v tag o[1]---[B1 <tag> <set index> <block offset>
<
\' tag 0 1 e oo B_1|
set 1: 000 3
v tag 0o|1[---|B1
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
v tag ol 1 B1 set <set index> match <tag>.
set §-1: tee :
v tag 0 1] ---|B1 The word contents begin at offset. |
<block offset> bytes from the beginning
of the block.
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Cache Parameters

* S = 25 number of sets

* E: number of lines / set (E = 1 direct-mapped)
* B = 2°: block size in bytes

» m = log,(M): number of address bits

* t=m— (s + b): number of tag bits

* C =B x E x S: cache size in bytes (blocks only,
not valid and tag bits)
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Multi-level caches

* Options: separate data and instruction caches,
or a unified cache

Processor m o
d-cache
L1

i-cache

size: 200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 30 GB
speed: 3 ns 3 ns 6 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32 B 32 B 8 KB

larger, slower, cheaper

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 7, 2011



Intel Pentium Cache Hierarchy

L1 Data
1 cycle latency
16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way
32B lines
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Cache performance metrics

*» Miss Rate

— Fraction of memory references not found in cache (misses/
references)

— Typical numbers:
« 3-10% for L1
» can be quite small (e.g., < 1%) for L2, depending on size, etc.

* Hit Time
— Time to deliver a line in the cache to the processor (includes
time to determine whether the line is in the cache)
— Typical numbers:
» 1 clock cycle for L1
» 3-8 clock cycles for L2

* Miss Penalty
— Additional time required because of a miss
« Typically 25-100 cycles for main memory

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 7, 2011



Writing cache friendly code

* Repeated references to variables are good (temporal
locality)

» Stride-1 reference patterns are good (spatial locality)

* Examples:
— assume cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows (int a[M] [N]) int sumarraycols (int a[M] [N])
{ {
int i, j, sum = 0; int i, j, sum = 0;
for (i = 0; i < M; i++4) for (j = 0; j < N; j++)
for (j = 0; j < N; j++) for (i = 0; i < M; 1i++4)
sum += a[i] []]; sum += a[i] []J];
return sum; return sum;
} }
Miss rate = 1/4 = 25% Miss rate = 100%
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Matrix multiplication example

* Major cache effects to consider

— Total cache size

« Exploit temporal locality and keep the working set small (e.g., by

using blocking)

— Block size
« Exploit spatial locality

* Description:
— Multiply N x N matrices
— O(NB3) total operations
— Accesses

/* ijk */
for (i=0; i<n; i++)
for (3j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<

Variable sum
held in register

ng k++) //

sum += a[i] [k] * b[k][]];
c[i][J] = sum;
}
}

* N reads per source element

* N values summed per destination
— but may be able to hold in register
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Miss rate analysis for matrix multiply

* Assume:

— Line size = 32B (big enough for 4 64-bit words)
— Matrix dimension (N) is very large
» Approximate 1/N as 0.0
— Cache is not even big enough to hold multiple rows
* Analysis method:
— Look at access pattern of inner loop

- k—> -j— -j—
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Layout of C arrays in memory (review)

* C arrays allocated in row-major order
— each row in contiguous memory locations

* Stepping through columns in one row:
— for (i = 0; 1 < N; i++)
sum += A[0][4i];
— accesses successive elements
— if block size (B) > 4 bytes, exploit spatial locality
« compulsory miss rate = 4 bytes / B
» Stepping through rows in one column:
— for (1 = 0; 1 < n; 1++)
sum += A[i][0];
— accesses distant elements

— no spatial locality!
« compulsory miss rate = 1 (i.e. 100%)
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Conflict misses in Direct-Mapped Caches

float dotprod(float x[8], float yI[8])
{
float sum = 0.0; 1int 1i;
for (i = 0; 1 < 8; i++)
sum += x[1] * y[i];
return sum;

}

* Assume for simplicity
— 4-byte floats
— X[] loaded at address 0, y[] at address 32
— 16 byte cache block (4 floats)
— 2 sets (cache size = 32 bytes)

* x[0] — x[3] and y[0] — y[3] map to set 0

* Xx[4] — x[7] and y[4] — y[7] map to set 1

* Almost every array reference clobbers the same cache set

* This is called thrashing. Can make code 2 or 3 times slower.

* Fix by padding arrays to avoid powers of 2, e.g., x[12] and y[12].
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Matrix multiplication (ijk)

/* ijk */ Inner loop:
for (i=0; i<n; i++) {

for (j=0; j<n; Jj++) { ")
sum = 0.0; g . (iij)
for (k=0; k<n; k++) (i,)
sum += A[i] [k] * B[k][]J]; A B C

C[i][j] = sum; I I I
}

Row-wise Column- Fixed
wise

}

*Misses per inner loop iteration:
A B C

0.25 1.0 0.0
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Matrix multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { %ﬁ?
sum = 0.0; g _ @j)
for (k=0; k<n; k++) (i,)
sum += A[i][k] * B[k1[3]; A B C
C[i][j] = sum

5 T

Row-wise Column- Fixed

Inner loop:

: . : . wise
*Misses per inner loop iteration:
A B C
0.25 1.0 0.0
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Matrix multiplication (jki)

/* ki */ Inner loop:
for (3j=0; j<n; Jj++) {
for (k=0; k<n; k++) { jj)
r = B[k][]]; (k.j)
for (i=0; i<n; i++) =
C[i][3] += A[1i] [k] * r; A B
}
} |

Column - Fixed

wise

*Misses per inner loop iteration:
A B C
1.0 0.0 1.0
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Matrix multiplication (kji)

/* kji */ Inner loop:
for (k=0; k<n; k++) {
for (j=0; j<n; J++) { *,K)
r = B[k][]]; (k.j)
for (i=0; i<n; i++) =
C[i][J] += A[i][k] * r; A B
}
}

Column- Fixed

wise
*Misses per inner loop iteration:
A B C
1.0 0.0 1.0
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Matrix multiplication (kij)

/* kij */ Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { (i.k) E|(k,*)
r = A[i] [k]; B = (@i,")
for (j=0; j<n; j++) A B C

CI[1i]1[3J] += r * B[k]I[]]~

5 ]

Fixed Row-wise Row-wise

*Misses per inner loop iteration:
A B C

0.0 0.25 0.25
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Matrix multiplication (ikj)

/* ikj */ Inner loop:
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i.K) E(k,*)g
r = A[i] [k]; O (i,%)

for (j=0; j<n; j++) A B C
C[i][J] += r * B[k]I[3]]~’

5 ]

Fixed Row-wise Row-wise

*Misses per inner loop iteration:
A B C

0.0 0.25 0.25
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Summary of matrix multiplication

Ijk & jik: jki & Kji: kij & ikj:
« 2 loads, O stores - 2 loads, 1 store - 2 loads, 1 store
* misses/iter = 1.25 * misses/iter = 2.0 * misses/iter = 0.5
for (i=0; i<n; i++) { for (j=0; j<n; j++) { for (k=0; k<n; k++) {
for (j=0; j<n; j++) { for (k=0; k<n; k++) { for (i=0; i<n; i++) {
sum = 0.0; r = BIk][j]; r = A[i][k];
for (k=0; k<n; k++) for (i=0; i<n; i++) for (j=0; j<n; j++)
sum += A[i][k] * BIKI[i]; CIil(i] += ALIIK] * r; Cil(i] += r * BIKIL];
CIi]Li] = sum; } }
} } }
}
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Pentium matrix multiply performance

* Miss rates are helpful but not perfect predictors.
60.00° _Code scheduling matters, too.

45.00

5 ¢ K
= K
£ 30.00 & Kij
(/2] -
o O ikj
(8]
3 o jik
® ijk

15.00

0
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Improving temporal locality by blocking

* Example: Blocked matrix multiplication
— “block” (in this context) does not mean “cache block”.
— Instead, it mean a sub-block within the matrix.
— Example: N = 8; sub-block size = 4

A11 A12 B11 B12 C11 C12

A21 A22 B21 B22 C21 C22_

Key idea: Sub-blocks (i.e., A,,) can be treated just like scalars.
Cyy = AyByy +ABy, Ciy = ABya +ABy,

Cyy = AyByy + AyByy Coy = AyBys + AyBy,
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Blocked matrix multiply (bijk)

for (3jj=0; jj<n; jjt+=bsize) {
for (i=0; i<n; i++)
for (j=jj; j < min(jjt+bsize,n); Jj++)
c[i] [J] = 0.0;
for (kk=0; kk<n; kk+=bsize) {
for (1=0; i<n; i++) {
_ for (3=3j3; j < min(jjt+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i] [k] * b[k][]]~
}

c[i][jJ] += sum;

}
3
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Blocked matrix multiply analysis

* Innermost loop pair multiplies a 7 X bsize sliver of A by a bsize X
bsize block of B and accumulates into 7 X bsize sliver of C

+ Loop over i steps through n row slivers of A & C, using same B

for (i=0; i<n; i++) {
— for (j=j3j; j < min(jj+bsize,n); J++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i] [k] * b[k][]]~

}
/ c[il[j] += sum;

Innermost }
Loop Pair — kk —> . i |
T = | [] = |
L) pe ) IN
A B C\

Update successive
elements of sliver

row sliver accessed
bsize times block reused n
times in succession
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Pentium blocked matrix mult performance

* Blocking (bijk and bikj) improves performance by a
factor of two over unblocked versions (ijk and jik)
— relatively insensitive to array size.

60.00
* Kiji
45.00 & jki
A Kij
c o ikj
g o Ik
£ 30.00 ek
3 o bijk (bsize = 25)
5 o bikj (bsize = 25)
15.00
0 EECS 213 Introguctlon to Computer Systel'ns
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Concluding observations

* Programmer can optimize for cache performance
— How data structures are organized
— How data are accessed

* Nested loop structure
» Blocking is a general technique

» All systems favor “cache friendly code”

— Getting absolute optimum performance is very platform
specific
e Cache sizes, line sizes, associativities, etc.
— Can get most of the advantage with generic code
« Keep working set reasonably small (temporal locality)
» Use small strides (spatial locality)
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