
Chris Riesbeck, Fall 2011
Original: Fabian Bustamante

Linking

Today
 Static linking
 Object files
 Static & dynamically linked libraries

Next time
 Exceptional control flows

Wednesday, November 16, 2011

Checkpoint

Wednesday, November 16, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/12-Linking-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/12-Linking-quiz.key

EECS 213 Introduction to Computer Systems
Northwestern University

3

A simplistic program translation scheme

Problems:
• Efficiency: small change requires complete recompilation
• Modularity: hard to share common functions (e.g. printf)

Solution:
• Static linker (or linker)

Translator

m.c

p

ASCII source file

Binary executable object file
(memory image on disk)

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

4

A better scheme using a linker

Linker (ld)

Translators

m.c

m.o

Translators

a.c

a.o

p

Separately compiled
relocatable object files

Executable object file (contains code
and data for all functions defined in m.c
and a.c)

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

5

Translating the example program

Compiler driver coordinates all steps in the translation
and linking process.
– Typically included with each compilation system (e.g., gcc)
– Invokes preprocessor (cpp), compiler (cc1), assembler (as),

and linker (ld).
– Passes command line arguments to appropriate phases

Example: create executable p from m.c and a.c:

bass> gcc -O2 -v -o p m.c a.c
cpp [args] m.c /tmp/cca07630.i
cc1 /tmp/cca07630.i m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o /tmp/cca076302.o
bass>

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

6

What does a linker do?

Merges object files
– Merges multiple relocatable (.o) object files into a single

executable object

Resolves external references
– As part of the merging process, resolves external references.

• External reference: reference to a symbol defined in another
object file.

Relocates symbols
– Relocates symbols from their relative locations in .o files to

new absolute positions in the executable.
– Updates all references to these symbols to reflect their new

positions.
• References can be in either code or data

– code: a(); /* reference to symbol a */
– data: int *xp=&x; /* reference to symbol x */

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

7

Why linkers?

Modularity
– Program can be written as a collection of smaller source files,

rather than one monolithic mass.
– Can build libraries of common functions (more on this later)

• e.g., Math library, standard C library

Efficiency
– Time:

• Change one source file, compile, and then relink.
• No need to recompile other source files.

– Space:
• Libraries of common functions can be aggregated into a single

file...
• Yet executable files and running memory images contain only

code for the functions they actually use.

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

8

Executable and Linkable Format (ELF)

Standard binary format for object files
Derives from AT&T System V Unix
– Later adopted by BSD Unix variants and Linux

One unified format for
– Relocatable object files (.o),
– Executable object files
– Shared object files (.so)

Generic name: ELF binaries
Better support for shared libraries than old a.out
formats.

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

9

ELF object file format
ELF header
– Magic number, type (.o, exec, .so),

machine, byte ordering, etc.
Program header table
– Page size, virtual addresses memory

segments (sections), segment sizes.
.text section
– Code
.rodata section
– read-only data, e.g., const strings
.data section
– Initialized (static) data
.bss section
– Uninitialized (static) data
– Originally an IBM 704 assembly

instruction; think of “Better Save
Space”

– Has section header, occupies no space

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

10

ELF object file format (cont)
.symtab section
– Symbol table
– Procedure and static variable names
– Section names and locations
.rel.text section
– Relocation info for .text section
– Addresses of instructions that will

need to be modified in the executable
– Instructions for modifying.
.rel.data section
– Relocation info for .data section
– Addresses of pointer data that will

need to be modified in the merged
executable

.debug section
– Info for symbolic debugging (gcc -g)

appears w/ .line as well (src code line
mapping)

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

11

Example C program

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

12

Merging relocatable object files

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

13

Relocating symbols & resolving refs
Symbols are lexical entities that name functions and variables.
Each symbol has a value (typically a memory address).
Code consists of symbol definitions and references.
References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c

extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of
local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

14

m.o Relocation info

Disassembly of section .text:

00000000 <main>: 00000000 <main>:
 0: 55 pushl %ebp
 1: 89 e5 movl %esp,%ebp
 3: e8 fc ff ff ff call 4 <main+0x4>
 4: R_386_PC32 a
 8: 6a 00 pushl $0x0
 a: e8 fc ff ff ff call b <main+0xb>
 b: R_386_PC32 exit
 f: 90 nop

Disassembly of section .data:

00000000 <e>:
 0: 07 00 00 00

source: objdump

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

PC relative

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

15

a.o Relocation info (.text)

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .text:

00000000 <a>:
 0: 55 pushl %ebp
 1: 8b 15 00 00 00 movl 0x0,%edx
 6: 00
 3: R_386_32 ep
 7: a1 00 00 00 00 movl 0x0,%eax
 8: R_386_32 x
 c: 89 e5 movl %esp,%ebp
 e: 03 02 addl (%edx),%eax
 10: 89 ec movl %ebp,%esp
 12: 03 05 00 00 00 addl 0x0,%eax
 17: 00
 14: R_386_32 y
 18: 5d popl %ebp
 19: c3 ret
 Absolute

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

16

a.o Relocation info (.data)

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .data:

00000000 <ep>:
 0: 00 00 00 00
 0: R_386_32 e
 00000004 <x>:
 4: 0f 00 00 00

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

17

After relocation & refs. resol. (.text)

08048530 <main>:
 8048530: 55 pushl %ebp
 8048531: 89 e5 movl %esp,%ebp
 8048533: e8 08 00 00 00 call 8048540 <a>
 8048538: 6a 00 pushl $0x0
 804853a: e8 35 ff ff ff call 8048474 <_init+0x94>
 804853f: 90 nop

08048540 <a>:
 8048540: 55 pushl %ebp
 8048541: 8b 15 1c a0 04 movl 0x804a01c,%edx
 8048546: 08
 8048547: a1 20 a0 04 08 movl 0x804a020,%eax
 804854c: 89 e5 movl %esp,%ebp
 804854e: 03 02 addl (%edx),%eax
 8048550: 89 ec movl %ebp,%esp
 8048552: 03 05 d0 a3 04 addl 0x804a3d0,%eax
 8048557: 08
 8048558: 5d popl %ebp
 8048559: c3 ret

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

18

After relocation & refs. resol. (.data)

Disassembly of section .data:

0804a018 <e>:
 804a018: 07 00 00 00

0804a01c <ep>:
 804a01c: 18 a0 04 08

0804a020 <x>:
 804a020: 0f 00 00 00

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

19

Strong and weak symbols

Program symbols are either strong or weak
– strong: procedures and initialized globals
– weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

20

Linker’s symbol rules

Rule 1. A strong symbol can only appear
once.
Rule 2. A weak symbol can be overridden by a
strong symbol of the same name.
– references to the weak symbol resolve to the strong

symbol.
Rule 3. If there are multiple weak symbols, the
linker can pick an arbitrary one.

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

21

Packaging commonly used functions
How to package functions commonly used by programmers?
– Math, I/O, memory management, string manipulation, etc.

Awkward, given the linker framework so far:
– Option 1: Put all functions in a single source file

• Programmers link big object file into their programs
• Space and time inefficient

– Option 2: Put each function in a separate source file
• Programmers explicitly link appropriate binaries into their programs
• More efficient, but burdensome on the programmer

Solution: static libraries (.a archive files)
– Concatenate related relocatable object files into a single file with an

index (called an archive).
– Enhance linker so that it tries to resolve unresolved external

references by looking for the symbols in one or more archives.
– If an archive member file resolves reference, link into executable.

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

22

Static libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code and
data for libc functions that are called from
p1.c and p2.c)

Further improves modularity and efficiency by packaging commonly
used functions [e.g., C standard library (libc), math library (libm)]

Linker selectively only the .o files in the archive that are actually
needed by the program.

Linker (ld)

p

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

23

Creating static libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
• Recompile function that changes and replace .o file in archive.

C standard library

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

24

Commonly used libraries
libc.a (the C standard library)
– 8 MB archive of 900 object files.
– I/O, memory allocation, signal handling, string handling, data and

time, random numbers, integer math
libm.a (the C math library)
– 1 MB archive of 226 object files.
– floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

25

Using static libraries

Linker’s algorithm for resolving external references:
– Scan .o files and .a files in the command line order.
– During the scan, keep a list of the current unresolved

references.
– As each new .o or .a file obj is encountered, try to resolve

each unresolved reference in the list against the symbols in
obj.

– If any entries in the unresolved list at end of scan, then error.
Problem:
– Command line order matters!
– Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

26

Loading executable binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

27

Shared libraries

Static libraries still have a few disadvantages:
– Potential for duplicating common code in multiple exec files

• e.g., every C program needs the standard C library
– Potential for duplicating code in the virtual mem. space of

many processes
– Minor bug fixes of system libraries require each application to

explicitly relink
Solution:
– Shared libraries (dynamic link libraries, DLLs) whose

members are dynamically loaded into memory and linked into
an application at run-time.

• Dynamic linking can occur when exec is first loaded and run.
– Common case for Linux, handled automatically by ld-linux.so.

• Dynamic linking can also occur after program has begun.
– In Linux, this is done explicitly by user with dlopen().
– Basis for High-Performance web servers.

• Shared library routines can be shared by multiple processes.

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

28

Dynamically linked shared libraries

libc.so functions called by m.c
and a.c are loaded, linked, and
(potentially) shared among
processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

m.c

m.o

Translators
(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

Fully linked executable
pʼ (in memory)

Partially linked executable p
(on disk)

P’

p is what you distribute. It
has no dynamic library
code. Therefore, it's smaller
BUT it won't work if user
doesn't have the correct
dynamic library ("DLL hell").

Wednesday, November 16, 2011

EECS 213 Introduction to Computer Systems
Northwestern University

29

The complete picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

libwhatever.a

p’

libm.so

Wednesday, November 16, 2011

