FabidbhEistRistimweahid; 82003 2007

Virtual Memory

Today

® Motivations for VM

® Address translation

® Accelerating translation with TLBs

Monday, November 14, 2011

A system with physical memory only

Addresses generated by the CPU correspond directly to
bytes in physical memory

Memory

0:
Physical 1:
Addresses

CPU

E.g. most Cray
machines, early
PCs, nearly all
embedded N-1:
systems, etfc.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

A system with virtual memory

Modern processors use virtual addresses

Hardware converts virtual addresses to physical
addresses via OS-managed page table

Memory
0:
Page Table 1:
Virtual ;
Addresses 0: AZ’Z,’;S’;’;ZS
1:
CPU
E.g. workstations, P.1- N KT .\ %
servers, modern ' .o N-1:

PCs, etc. A
g

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Motivations for virtual memory

» Use physical DRAM as a cache for the disk
— Address space of a process can exceed physical memory size
— Sum of address spaces of multiple processes can exceed
physical memory
» Simplify memory management
— Multiple processes resident in main memory.
» Each process with its own address space

— Only “active” code and data is actually in memory
» Allocate more memory to process as needed.

* Provide protection
— One process can't interfere with another.
» because they operate in different address spaces.

— User process cannot access privileged information
« different sections of address spaces have different permissions.

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Motivation #1: DRAM a “cache” for disk

» Full address space is quite large:
— 32-bit addresses: ~4,000,000,000 (4 billion) bytes
— 64-bit addresses: ~16,000,000,000,000,000,000 (16
quintillion) bytes
» Disk storage is ~300X cheaper than DRAM storage
— 80 GB of DRAM: ~ $33,000
— 80 GB of disk: ~ $110

» To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

_ 80 GB: ~$110
1GB: ~$200 _ —
4 MB: ~$500 < >
SRAM|*— DRAM [— Disk
\/

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Levels i

size:
speed:
$/Mbyte:
line size:

n memory hierarchy

cache virtual memory

C
CPU | 8B |71 32B |pMemoryl4XE @
regs h v

o \/

Register Cache Memory Disk Memory
32 B 32KB-4MB 1024 MB 100 GB
1ns 2 Nns 30 ns 8 ms
$125/MB $0.20/MB $0.001/MB

8B 32 B 4 KB

larger, slower, cheaper

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

DRAM vs. SRAM as a “cache”

* DRAM vs. disk is more extreme than SRAM vs. DRAM

— Access latencies:
« DRAM ~10X slower than SRAM
* Disk ~100,000X slower than DRAM
— Importance of exploiting spatial locality:

 First byte is ~100,000X slower than successive bytes on disk
— vs. ~4X improvement for page-mode vs. regular accesses to DRAM

— Bottom line:

* Design decisions made for DRAM caches driven by enormous
cost of misses

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Impact of properties on design

¢ |f DRAM was to be organized similar to an SRAM
cache, how would we set the following design
parameters?
— Line size? Large, since disk better at transferring large blocks
— Associativity? High, to minimize miss rate
— Write through or write back?
» Write back, since can’t afford to perform small writes to disk

* What would the impact of these choices be on:
— Miss rate: Extremely low. << 1%
— Hit time: Must match cache/DRAM performance
— Miss latency: Very high. ~20ms
— Tag storage overhead: Low, relative to block size

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Locating an object in a “"Cache”

* SRAM Cache

— Tag stored with cache line

— Maps from cache block to memory blocks
« From cached to uncached form
« Save a few bits by only storing tag

— No tag for block not in cache

— Hardware retrieves information
« Can quickly match against multiple tags

“Cache”
Tag Data
Object Name 0: 4 D 243
X =X? _< B X 17
N-1:| J 105

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Locating an object in “"Cache” (cont.)

* DRAM Cache

— Each allocated page of virtual memory has entry in page table
— Mapping from virtual pages to physical pages
» From uncached form to cached form
— Page table entry even if page not in memory
» Specifies disk address
* Only way to indicate where to find page
— OS retrieves information

Page Table “Cache”
Location Data
Object Name D: 0 0: 243
X \ J: On.Disk 1/v 1.7 G
~ . ,/ .
X: 1 N-1: 105

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Page faults (like “cache misses”)

» What if an object is on disk rather than in memory?
— Page table entry indicates virtual address not in memory

— OS exception handler invoked to move data from disk into
memory
 current process suspends, others can resume
» OS has full control over placement, etc.

Before fault After fault
Memory Memory
fage Table Page Table
Virtual i
Addresses AZh ,2'5"5"25,,, Virtual Physical

Addresses

Addresses..-

CPU

CPU

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Servicing a page fault

* Processor signals controller

— Read block of length P
starting at disk address X and
store starting at memory
address Y

» Read occurs
— Direct Memory Access (DMA)

— Under control of I/O controller

» | / O controller signals
completion
— Interrupt processor

— OS resumes suspended
process

(1) Initiate Block Read

Processor
Reg (3) Read
Done
Cache

(2) DMA
Transfer

Memory

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Motivation #2: Memory management

* Multiple processes can reside in physical memory.

* How do we resolve address conflicts?

— what if two processes access something at the same
address?

memory invisible to

i | memor
kernel virtual memory user code

stack

v
1

Memory mapped region

Lin UX/X86 forshared libraries
prOCGSS f

memory runtime heap (via maIIocr

image uninitialized data (.bss)
initialized data (.data)
program text (.text)
forbidden

%esp —>

the “brk” ptr

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Solution: Separate virtual addr. spaces

* Virtual and physical address spaces divided into
equal-sized blocks

— blocks are called “pages” (both virtual and physical)

» Each process has its own virtual address space

— operating system controls how virtual pages as assigned to
physical memory

0
Virtual 0 Address Translation Physical
Address VP 1 . PP2 Address
VP 2

Space for Space
Process 1: \ (DRAM)
(e.g., read/only

. i/ library code)
Virtual 0
VP 1
Address 55 PP 10
Space for
Process 2: M-1
N-1

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Motivation #3: Protection

Page table entry contains access rights information.
Hardware enforces this protection. Trap into OS if violation occurs.

Page Tables Memory
Read? Write? Physical Addr 0:
VP 0: Yes No PP 9 1:
Process i: |vP 1] Yes || Yes PP 4
vP2] No || No || xxoxxxxx e

Read? Write? Physical Addr

VP 0:] Yes Yes PP 6 /

Process j: |vP 1] Yes No PP 9 N-1:
VP 2] No No XXXXXXX

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

VM address translation

* Virtual Address Space
- V={0,1, ..., N-1}

* Physical Address Space
- P={0,1, ..., M-1}
- M<N

* Address Translation
— MAP: V—- P U {J}
— For virtual address a:
« MAP(a) = a’ if data at virtual address a is at physical address
ainP
« MAP(a) = ¢ if data at virtual address a is not in physical memory
— Either invalid or stored on disk

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

VM address translation: Miss

Processor

Hardware

R Main
a Addr Trans .| Memory

Mechanism a'
/ | X

virtual address part of the physical address

on-chip
memory mgmt
unit (MMU)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

VM address translation: Miss

page fault
/ fault
Processor handler
@ L
R AI-Laer yr\:.aarfs — Main Secondary
/ a Mechanism 5 _. Memory — memory
virtual address part of the physical address \OS performs
on-chip this transfer
memory mgmt (only if miss)
unit (MMU)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

VM address translation

* Parameters
— P = 2r = page size (bytes).
— N = 2" = Virtual address limit
— M =2m = Physical address limit

n—1 p p-1 0
virtual page number page offset virtual address

!

address translation >

m-1 : p p-1 0
physical page number page offset physical address

Page offset bits don’t change as a result of translation

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Page tables

Virtual Page Memory resident

Number page table

(physical page]
valid or disk address) Physical Memory

1

f

e

1
0
1
1
1
0
1
0
1

AN

\
AN Disk Storage
AN (swap filfe or _
. N \\ regular file system file)
NN \N— Yy
\\ \\ \\\ __—
ANIRN RN
AN
\\\\|
4_/

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Address translation via page table

virtual address

page table base register

n-1 p p-1 0
VPN acts virtual page number (VPN) | page offset VPO
as l
table ind valid access physical page number (PPN
>
if valid=0 |
then page
not in memory m-—1 v p p-1 v 0

physical page number (PPN‘ page offset PPO

physical address

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Page table operation

* Translation
— Separate (set of) page table(s) per process
— VPN forms index into page table (points to a page table entry)

page table base register virtual address

n—1 p p-1 0
VPN acts virtual page number (VPN) page offset
as
table inde valid access physical page number (PPN)
if valid=0 |
then page
not in memory m-1 v p p-1 v 0

physical page number (PPN)| page offset

physical address

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Page table operation

* Computing physical address

— Page Table Entry (PTE) provides info about page
« if (valid bit = 1) then the page is in memory.
— Use physical page number (PPN) to construct address
« if (valid bit = 0) then the page is on disk - page fault

page table base register virtual address
n—1 p p-1 0
VPN acts virtual page number (VPN) page offset
as

valid access physical page number (PPN)

v

if valid=0 |
then page
not in memory m-1 v p p-1 v 0

physical page number (PPN)| page offset

physical address
EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Page table operation

» Checking protection
— Access rights field indicate allowable access
* e.g., read-only, read-write, execute-only
* typically support multiple protection modes
— Protection violation fault if user doesn’t have necessary

permission

page table base register

n-1

virtual address

p_p-1

VPN acts virtual page number (VPN) page offset

table inde valid access physical page number (PPN)

v

if valid=0 |
then page
not in memory m-1

A

y p_p-1 v

physical page number (PPN)| page offset

EECS 213 Introduction to Computer Systems
Northwestern University

physical address

Monday, November 14, 2011

Checkpoint

I Bl —

gen
a1 N

ALLIED [
SHECKPOINT CHARLIE J
L . ¥

E T
ALLIED
CHECKPOINT

Monday, November 14, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key

Multi-level page tables

. Level 2
* Given: Tables

— 4KB (2'?) page size
— 32-bit address space
— 4-byte PTE
Level 1

* Problem: Table

— Would need a 4 MB page table!
« 220%4 bytes

* Common solution

— multi-level page tables

— e.g., 2-level table (P6)

 Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

* Level 2 table: 1024 entries, each of
which points to a page

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Integrating VM and cache

* Most caches accessed by physical addresses
— Allows multiple processes to have blocks in cache at a time
— Allows multiple processes to share pages
— Cache doesn’t need to be concerned with protection issues
—Access rights checked as part of address translation

» Perform address translation before cache lookup
— But this could involve a memory access itself (of the PTE)
— Of course, page table entries can also become cached.

VA PA Mmiss

— >

Trans- ' Main
CPU lation Cache Memory

hit |>
data v

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Speeding up translation with a TLB

“Translation Lookaside Buffer” (TLB)

— Small hardware cache with high associativity in MMU

— Maps virtual page numbers to physical page numbers

— Contains complete page table entries for small number of

pages
hit _
VA PA miss
TLB |] Main
CPU ‘ Lookup Cache : Memory
f
miss | hit
Trans-
lation
— data

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Address translation with a TLB

n—1 p_ p-i 0
| virtual @Te number | page offset]| virtual address)
valid tag physical page number
> TLB
TLB hit—0 |
physical address A
tag index \ byte offset
valid tag data
> Cache
"Q)
cache hit——(—— * data

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Taken stock — main themes

* Programmer’s view

— Large “flat” address space

» Can allocate large blocks of contiguous addresses
— Processor “owns” machine

» Has private address space

« Unaffected by behavior of other processes

* System view

— Virtual address space created by mapping to set of pages
* Need not be contiguous
 Allocated dynamically
« Enforce protection during address translation
— OS manages many processes simultaneously
« Continually switching among processes

» Especially when one must wait for resource
— E.g., disk I/O to handle page fault

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Simple memory system

* Memory is byte addressable

* Access are to 1-byte words

* 14-bit virtual addresses, 12-bit physical address
- Page size = 64 bytes (2°)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO

(Virtual Page Number) (Virtual Page Offset)
1 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
(Physical Page Number) (Physical Page Offset)

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Simple memory system page table

® Only show first 16 entries

VPN | PPN | Valid | VPN | PPN | Valid
00 | 28 | 1 08 | 13 | 1
01 | - o | oo | 17 | 1
02 | 3 | 1 | oA] 09 [1
03 | 02| 1 | oB | - 0
04 | - o | oc | - 0
o5 | 16 | 1 | ob | 2D | 1
06 | - o | oE | 11 1
07 | - o | oF | oo | 1

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Simple memory system TLB

* TLB

— 16 entries
— 4-way associative

TLBT
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
Set | Tag | PPN | Valid] Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 — 0 09 0D 1 00 — 0 07 02 1
1 03 2D 1 02 — 0 04 — 0 O0A — 0
2 02 — 0 08 — 0 06 — 0 03 — 0
3 07 — 0 03 0D 1 0A 34 1 02 — 0

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Set | Tag | PPN | Valid] Tag | PPN | Valid] Tag | PPN | Valid | Tag | PPN | Valid
0 03 — 0 09 0D 1 00 — 0 07 02 1
1 03 2D 1 02 — 0 04 — 0 0A — 0
2 02 — 0 08 — 0 06 — 0 03 - 0
3 07 — 0 03 0D 1 0A 34 1 02 — 0

ldx | Tag | Vald | BO B1 B2 B3 ldx | Tag | Vald | BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - _ _ _
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - -~ - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 c2 DF 03 F 14 0 - - - -

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Simple memory system cache

» Cache
— 16 lines
— 4-byte line size
— Direct mapped

CT Cl
11 10 9 8 7 6 5 4 3 2

PPN PPO
ldx Tag Valid BO B1 B2 B3 Idx Tag Valid BO B1

0 19 1 99 11 23 1 8 24 1 3A 00

1 15 0 - - - - 9 2D 0 - -

2 1B 1 00 02 04 08 A 2D 1 93 15

3 36 0 — — - — B 0B 0 — -

4 32 1 43 6D 8F 09 C 12 0 - -

5 oD 1 36 72 FO 1D D 16 1 04 96

6 31 0 - - - - E 13 1 83 77

7 16 1 11 C2 DF 03 F 14 0 — -

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

Checkpoint

I Bl —

gen
a1 N

ALLIED [
SHECKPOINT CHARLIE J
L . ¥

E T
ALLIED
CHECKPOINT

Monday, November 14, 2011

keynote:/Users/riesbeck/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key
keynote:/Users/riesbeck/Courses/EECS%20213/slides/15-VirtualMemory-translation-quiz.key

Harsh reality

® Memory matters

* Memory is not unbounded
— It must be allocated and managed
— Many applications are memory dominated
« Especially those based on complex, graph algorithms
* Memory referencing bugs especially pernicious
— Effects are distant in both time and space

* Memory performance is not uniform

— Cache and virtual memory effects can greatly affect program
performance

— Adapting program to characteristics of memory system can
lead to major speed improvements

EECS 213 Introduction to Computer Systems
Northwestern University

Monday, November 14, 2011

