
Chris Riesbeck, Fall 2011
Original: Fabian Bustamante

Today
 Working with Unix files
 Standard I/O
 Conclusions

System-Level I/O

Sunday, November 20, 2011

A typical hardware system

2

main
memory

I/O
bridgebus interface

ALU

register file
CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus
Expansion slots for
other devices such
as network adapters.

Sunday, November 20, 2011

Reading a disk sector: Step 1

3

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

CPU initiates a disk read by writing a command,
logical block number, and destination memory
address to a port (address) associated with disk
controller.

Sunday, November 20, 2011

Reading a disk sector: Step 2

4

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

Disk controller reads the sector and performs a
direct memory access (DMA) transfer into main
memory.

Sunday, November 20, 2011

Reading a disk sector: Step 3

5

main
memory

ALU

register file
CPU chip

disk
controller

graphics
adapter

USB
controller

mousekeyboard monitor
disk

I/O bus

bus interface

When the DMA transfer completes, the disk
controller notifies the CPU with an interrupt (i.e.,
asserts a special “interrupt” pin on the CPU)

Sunday, November 20, 2011

Unix files

A Unix file is a sequence of m bytes:
– B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:
– /dev/sda2 (/usr disk partition)
– /dev/tty2 (terminal)

Even the kernel is represented as a file:
– /dev/kmem (kernel memory image)
– /proc (kernel data structures)

6
Sunday, November 20, 2011

Unix I/O

Key features
– Elegant mapping of files to devices allows kernel to export

simple interface
– Key Unix idea: All input and output is handled in a consistent

and uniform way
Why do we care?
– Understanding I/O helps you understand other system

concepts
– Sometimes you have no chance but to use Unix I/O functions

Basic Unix I/O operations (system calls):
– Opening and closing files: open()and close()
– Changing the current file position (seek): lseek (not discussed)
– Reading and writing a file: read() and write()

Important: these are not C's stream functions, e.g.,
fopen() and fclose()

7
Sunday, November 20, 2011

Opening files

open(filename, flags[, mode])
– http://www.gnu.org/s/hello/manual/libc.html#Opening-and-

Closing-Files
– http://www.cl.cam.ac.uk/cgi-bin/manpage?2+chmod

Returns an integer file descriptor
– -1 means an error occurred

Flags are bit masks, can OR'ed together
– O_RDONLY, O_WRONLY, O_RDWR

A shell process begins with three open files:
– 0: standard input; 1: standard output; 2: standard error

8

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
 perror(“open”);
 exit(1);
}

Sunday, November 20, 2011

http://www.gnu.org/s/hello/manual/libc.html%23Opening-and-Closing-Files
http://www.gnu.org/s/hello/manual/libc.html%23Opening-and-Closing-Files
http://www.gnu.org/s/hello/manual/libc.html%23Opening-and-Closing-Files
http://www.gnu.org/s/hello/manual/libc.html%23Opening-and-Closing-Files
http://www.cl.cam.ac.uk/cgi-bin/manpage?2+chmod
http://www.cl.cam.ac.uk/cgi-bin/manpage?2+chmod

Closing files

Closing a file informs the kernel that you are finished
accessing that file and Unix can reuse file descriptor.

Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)
Moral: Always check return codes, even for seemingly
benign functions such as close()
csapp.h and csapp.c in tiny.tar define Open()
and Close() to make this easier.
– In http://csapp.cs.cmu.edu/public/tiny.tar

9

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 perror(“close”);
 exit(1);
}

Sunday, November 20, 2011

http://csapp.cs.cmu.edu/public/tiny.tar
http://csapp.cs.cmu.edu/public/tiny.tar

Checkpoint

Sunday, November 20, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/17-IO-open-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/17-IO-open-quiz.key

Reading files

Reading a file copies bytes from the current file position
to memory, and then updates file position.

Returns number of bytes read from file fd into buf
– Return type ssize_t is signed integer
– nbytes == -1 indicates that an error occurred.
– Short counts (nbytes < sizeof(buf)) are possible and

are not errors!

11

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
 perror(“read”);
 exit(1);
}

Sunday, November 20, 2011

Writing files

Writing a file copies bytes from memory to the current
file position, and then updates current file position.

Returns number of bytes written from buf to file fd.
– nbytes == -1 indicates that an error occurred
– As with reads, short counts are possible and are not errors!

12

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror(“write”);
 exit(1);
}

Sunday, November 20, 2011

Unix I/O example

Copying standard input to standard output one byte at
a time.

13

#include <stdlib.h>
#include <unistd.h>

int main(void)
{
 char c;

 while((len = read(0 /* stdin */, &c, 1)) == 1) {
 if (write(1 /* stdout */, &c, 1) != 1)
 exit(20);

 if (len == -1) {
 perror(“read from stdin failed”);
 exit(10);
 }
 }
 exit(0);
}

Sunday, November 20, 2011

Dealing with short counts

Short counts can occur in these situations:
– Encountering (end-of-file) EOF on reads
– Reading text lines from a terminal
– Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
– Reading from disk files (except for EOF)
– Writing to disk files

14
Sunday, November 20, 2011

File metadata

Metadata is data about data, in this case file data.
Maintained by kernel, accessed by users with the stat
and fstat functions.

15

/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* protection and file type */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

Sunday, November 20, 2011

Example of accessing file metadata

16

/* statcheck.c - Querying and manipulating a file’s meta data */
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int main (int argc, char **argv)
{
 struct stat Stat;
 char *type, *readok;

 stat(argv[1], &Stat);
 if (S_ISREG(Stat.st_mode)) /* file type*/
 type = "regular";
 else if (S_ISDIR(Stat.st_mode))
 type = "directory";
 else
 type = "other";
 if ((Stat.st_mode & S_IRUSR)) /* OK to read?*/
 readok = "yes";
 else
 readok = "no";

 printf("type: %s, read: %s\n", type, readok);
 exit(0);
}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no

Sunday, November 20, 2011

How the kernel represents open files

Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor
4 points to open disk file.

17

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

Sunday, November 20, 2011

18

File sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries
– E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size
File type

File A

File B

Sunday, November 20, 2011

How processes share files

A child process inherits its parent’s open files
– Here is the situation immediately after a fork

19

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor
tables

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size
File type

File access

...

File size
File type

File A

File B

Sunday, November 20, 2011

I/O Redirection

Question: How does a shell implement I/O redirection?
unix> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd)
function
– Copies (per-process) descriptor table entry oldfd to entry
newfd

20

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

Sunday, November 20, 2011

Checkpoint

Sunday, November 20, 2011

keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/17-IO-read-quiz.key
keynote:/Users/riesbeck/Documents/Courses/EECS%20213/slides/17-IO-read-quiz.key

I/O Redirection example

Before calling dup2(4,1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open disk
file.

22

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...
stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Sunday, November 20, 2011

I/O Redirection example (cont)

After calling dup2(4,1), stdout is now redirected to
the disk file pointed at by descriptor 4.

23

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A

File B

stderr
stdout
stdin

Sunday, November 20, 2011

Standard I/O functions

The C standard library (libc.a) contains a collection
of higher-level standard I/O functions
– Documented in Appendix B of K&R.

Examples of standard I/O functions:
– Opening and closing files (fopen and fclose)
– Reading and writing bytes (fread and fwrite)
– Reading and writing text lines (fgets and fputs)
– Formatted reading and writing (fscanf and fprintf)

24
Sunday, November 20, 2011

Standard I/O streams

Standard I/O models open files as streams
– Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (defined
in stdio.h)
– stdin (standard input)
– stdout (standard output)
– stderr (standard error)

25

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
 fprintf(stdout, “Hello, world\n”);
}

Sunday, November 20, 2011

Standard I/O buffering in action

You can see this buffering in action, using strace

26

#include <stdio.h>

int main()
{
 printf(“h”);
 printf(“e”);
 printf(“l”);
 printf(“l”);
 printf(“o”);
 printf(“\n”);
 fflush(stdout);
 exit(0);
}

linux> strace ./bufStdio
execve("./bufStdio", ["./bufStdio"], [/* 24 vars */]) = 0
...
write(1, "hello\n", 6hello ...) = 6
exit_group(0) = ?

Sunday, November 20, 2011

27

Fork example #2 (earlier lecture)

Both parent and child can continue forking

Removed the “\n” from the first printf
– “L0” gets printed twice; fork duplicated stream buffer

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

L0 L1

L1

Bye

Bye

Bye

Bye

void fork2()
{
 printf("L0");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

L0L1

L0L1

Bye

Bye

Bye

Bye

Sunday, November 20, 2011

Having fun with file descriptors

28

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname=argv[1];
 fd1 = open(fname, O_RDONLY, 0);
 fd2 = open(fname, O_RDONLY, 0);
 fd3 = open(fname, O_RDONLY, 0);
 dup2(fd2, fd3);
 read(fd1, &c1, 1);
 read(fd2, &c2, 1);
 read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n",
 c1, c2, c3);
 exit(0);
}

What would this program print given a file containing ‘abcde’?

Sunday, November 20, 2011

What would this program print given a file containing ‘abcde’?

Having fun with file descriptors

29

#include <sys/types.h>
...

int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname=argv[1];
 fd1 = open(fname, O_RDONLY, 0);
 read(fd1, &c1, 1);
 if (fork()) { /* parent */
 sleep(s);
 read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else {
 sleep(1-s);
 read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 exit(0);
}

Sunday, November 20, 2011

What would be the content of the resulting file?

Having fun with file descriptors

30

#include <sys/types.h>
...

int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char *fname=argv[1];
 fd1 = open(fname, O_CREAT| O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR);
 write(fd1, "pqrs", 4);
 fd3 = open(fname, O_APPEND | O_WRONLY, 0);
 write(fd1, "jklmn", 5);
 fd2 = dup(fd1);
 write(fd2, "wxyz", 4);
 write(fd3, "ef", 2);
 exit(0);
}

Sunday, November 20, 2011

Pros/cons of Unix I/O

Pros
– Unix I/O is the most general and lowest overhead form of I/O

• All other I/O packages are implemented using Unix I/O functions
– Unix I/O provides functions for accessing file metadata

Cons
– Dealing with short counts is tricky and error prone
– Efficient reading of text lines requires some form of buffering,

also tricky and error prone
– Both of these issues are addressed by the standard I/O

31
Sunday, November 20, 2011

Pros/cons of Standard I/O

Pros:
– Buffering increases efficiency by decreasing the number of
read and write system calls

– Short counts are handled automatically
Cons:
– Provides no function for accessing file metadata
– Standard I/O is not appropriate for input and output on network

sockets
– There are poorly documented restrictions on streams that

interact badly with restrictions on sockets

32
Sunday, November 20, 2011

Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.
– Many C programmers are able to do all of their work using the

standard I/O functions.
When to use standard I/O?
– When working with disk or terminal files.

When to use raw Unix I/O
– When you need to fetch file metadata.

33
Sunday, November 20, 2011

Summary

System level I/O from the programmer perspective
– For the underlying details – EECS 343

Next time
– There is no next time L

34
Sunday, November 20, 2011

