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A typical hardware system
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Reading a disk sector: Step 1
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Reading a disk sector: Step 2
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direct memory access (DMA) transfer into main 
memory.

Sunday, November 20, 2011



Reading a disk sector: Step 3
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When the DMA transfer completes, the disk 
controller notifies the CPU with an interrupt (i.e., 
asserts a special “interrupt” pin on the CPU)
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Unix files

A Unix file is a sequence of m bytes:
– B0, B1, .... , Bk , .... , Bm-1

All I/O devices are represented as files:
– /dev/sda2    (/usr disk partition)
– /dev/tty2    (terminal)

Even the kernel is represented as a file:
– /dev/kmem  (kernel memory image) 
– /proc            (kernel data structures)
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Unix I/O

Key features
– Elegant mapping of files to devices allows kernel to export 

simple interface
– Key Unix idea: All input and output is handled in a consistent 

and uniform way
Why do we care?
– Understanding I/O helps you understand other system 

concepts
– Sometimes you have no chance but to use Unix I/O functions

Basic Unix I/O operations (system calls):  
– Opening and closing files: open()and close()
– Changing the current file position (seek): lseek (not discussed)
– Reading and writing a file: read() and write()

Important: these are not C's stream functions, e.g., 
fopen() and fclose()
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Opening files

open(filename, flags[, mode]) 
– http://www.gnu.org/s/hello/manual/libc.html#Opening-and-

Closing-Files
– http://www.cl.cam.ac.uk/cgi-bin/manpage?2+chmod

Returns an integer file descriptor
– -1 means an error occurred

Flags are bit masks, can OR'ed together
– O_RDONLY, O_WRONLY, O_RDWR

A shell process begins with three open files:
– 0: standard input; 1: standard output; 2: standard error
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int fd;   /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
   perror(“open”);
   exit(1);
}
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Closing files

Closing a file informs the kernel that you are finished 
accessing that file and Unix can reuse file descriptor.

Closing an already closed file is a recipe for disaster in 
threaded programs (more on this later)
Moral: Always check return codes, even for seemingly 
benign functions such as close()
csapp.h and csapp.c in tiny.tar define Open() 
and Close() to make this easier.
– In http://csapp.cs.cmu.edu/public/tiny.tar
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int fd;     /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
   perror(“close”);
   exit(1);
}
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Checkpoint
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Reading files

Reading a file copies bytes from the current file position 
to memory, and then updates file position.

Returns number of bytes read from file fd into buf
– Return type ssize_t is signed integer
– nbytes == -1 indicates that an error occurred.
– Short counts (nbytes < sizeof(buf) ) are possible and 

are not errors!
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char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open file fd ...  */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
   perror(“read”);
   exit(1);
}
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Writing files

Writing a file copies bytes from memory to the current 
file position, and then updates current file position.

Returns number of bytes written from buf to file fd.
– nbytes == -1 indicates that an error occurred
– As with reads, short counts are possible and are not errors!
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char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
   perror(“write”);
   exit(1);
}
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Unix I/O example

Copying standard input to standard output one byte at 
a time.
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#include <stdlib.h>
#include <unistd.h>

int main(void) 
{
   char c;

   while((len = read(0 /* stdin */, &c, 1)) == 1) {
      if (write(1 /* stdout */, &c, 1) != 1)
         exit(20);

      if (len == -1) {
         perror(“read from stdin failed”);
         exit(10);
      }
    }
    exit(0);
}
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Dealing with short counts

Short counts can occur in these situations:
– Encountering (end-of-file) EOF on reads
– Reading text lines from a terminal
– Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
– Reading from disk files (except for EOF)
– Writing to disk files

14
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File metadata

Metadata is data about data, in this case file data.
Maintained by kernel, accessed by users with the stat 
and fstat functions.
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/* Metadata returned by the stat and fstat functions */
struct stat {
    dev_t         st_dev;      /* device */
    ino_t         st_ino;      /* inode */
    mode_t        st_mode;     /* protection and file type */
    nlink_t       st_nlink;    /* number of hard links */
    uid_t         st_uid;      /* user ID of owner */
    gid_t         st_gid;      /* group ID of owner */
    dev_t         st_rdev;     /* device type (if inode device) */
    off_t         st_size;     /* total size, in bytes */
    unsigned long st_blksize;  /* blocksize for filesystem I/O */
    unsigned long st_blocks;   /* number of blocks allocated */
    time_t        st_atime;    /* time of last access */
    time_t        st_mtime;    /* time of last modification */
    time_t        st_ctime;    /* time of last change */
};
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Example of accessing file metadata
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/* statcheck.c - Querying and manipulating a file’s meta data */
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h>

int main (int argc, char **argv) 
{
    struct stat Stat;
    char *type, *readok;
    
    stat(argv[1], &Stat);
    if (S_ISREG(Stat.st_mode)) /* file type*/
 type = "regular";
    else if (S_ISDIR(Stat.st_mode))
 type = "directory";
    else 
 type = "other";
    if ((Stat.st_mode & S_IRUSR)) /* OK to read?*/
 readok = "yes";
    else
 readok = "no";

    printf("type: %s, read: %s\n", type, readok);
    exit(0);
}

bass> ./statcheck statcheck.c
type: regular, read: yes
bass> chmod 000 statcheck.c
bass> ./statcheck statcheck.c
type: regular, read: no
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How the kernel represents open files

Two descriptors referencing two distinct open disk files. 
Descriptor 1 (stdout) points to terminal, and descriptor 
4 points to open disk file.
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File sharing

Two distinct descriptors sharing the same disk file 
through two distinct open file table entries
– E.g., Calling open twice with the same filename argument
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How processes share files

A child process inherits its parent’s open files
– Here is the situation immediately after a fork
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I/O Redirection

Question: How does a shell implement I/O redirection?
unix> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd) 
function
– Copies (per-process) descriptor table entry oldfd to entry 
newfd
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Checkpoint
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I/O Redirection example

Before calling dup2(4,1), stdout (descriptor 1) points 
to a terminal and descriptor 4 points to an open disk 
file.
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I/O Redirection example (cont)

After calling dup2(4,1), stdout is now redirected to 
the disk file pointed at by descriptor 4.
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Standard I/O functions

The C standard library (libc.a) contains a collection 
of higher-level standard I/O functions
– Documented in Appendix B of K&R.

Examples of standard I/O functions:
– Opening and closing files (fopen and fclose)
– Reading and writing bytes (fread and fwrite)
– Reading and writing text lines (fgets and fputs)
– Formatted reading and writing (fscanf and fprintf)

24
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Standard I/O streams

Standard I/O models open files as streams
– Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams (defined 
in stdio.h)
– stdin (standard input)
– stdout (standard output)
– stderr (standard error)
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#include <stdio.h>
extern FILE *stdin;  /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
    fprintf(stdout, “Hello, world\n”);
}
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Standard I/O buffering in action

You can see this buffering in action, using strace

26

#include <stdio.h>

int main()
{
   printf(“h”);
   printf(“e”);
   printf(“l”);
   printf(“l”);
   printf(“o”);
   printf(“\n”);
   fflush(stdout);
   exit(0);
}

linux> strace ./bufStdio
execve("./bufStdio", ["./bufStdio"], [/* 24 vars */]) = 0
...
write(1, "hello\n", 6hello ...)                  = 6
exit_group(0)                           = ?
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Fork example #2 (earlier lecture)

Both parent and child can continue forking

Removed the “\n” from the first printf
– “L0” gets printed twice; fork duplicated stream buffer

void fork2()
{
    printf("L0\n");
    fork();
    printf("L1\n");    
    fork();
    printf("Bye\n");
}

L0 L1
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Bye

Bye

Bye

Bye

void fork2()
{
    printf("L0");
    fork();
    printf("L1\n");    
    fork();
    printf("Bye\n");
}

L0L1

L0L1

Bye

Bye

Bye

Bye
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Having fun with file descriptors
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#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
 
int main(int argc, char *argv[]) 
{ 
  int fd1, fd2, fd3; 
  char c1, c2, c3; 
  char *fname=argv[1]; 
  fd1 = open(fname, O_RDONLY, 0); 
  fd2 = open(fname, O_RDONLY, 0); 
  fd3 = open(fname, O_RDONLY, 0); 
  dup2(fd2, fd3); 
  read(fd1, &c1, 1); 
  read(fd2, &c2, 1); 
  read(fd3, &c3, 1); 
  printf("c1 = %c, c2 = %c, c3 = %c\n", 
         c1, c2, c3); 
  exit(0); 
} 

What would this program print given a file containing ‘abcde’?
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What would this program print given a file containing ‘abcde’?

Having fun with file descriptors

29

#include <sys/types.h>
...

int main(int argc, char *argv[])
{
  int fd1;
  int s = getpid() & 0x1;
  char c1, c2;
  char *fname=argv[1];
  fd1 = open(fname, O_RDONLY, 0);
  read(fd1, &c1, 1);
  if (fork()) { /* parent */
    sleep(s);
    read(fd1, &c2, 1);
    printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
  } else {
    sleep(1-s);
    read(fd1, &c2, 1);
    printf("Child: c1 = %c, c2 = %c\n", c1, c2);
  }
  exit(0);
}

Sunday, November 20, 2011



What would be the content of the resulting file?

Having fun with file descriptors

30

#include <sys/types.h>
...

int main(int argc, char *argv[])
{
  int fd1, fd2, fd3;
  char *fname=argv[1];
  fd1 = open(fname, O_CREAT| O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR);
  write(fd1, "pqrs", 4);
  fd3 = open(fname, O_APPEND | O_WRONLY, 0);
  write(fd1, "jklmn", 5);
  fd2 = dup(fd1);
  write(fd2, "wxyz", 4);
  write(fd3, "ef", 2);
  exit(0);
}
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Pros/cons of Unix I/O

Pros
– Unix I/O is the most general and lowest overhead form of I/O

• All other I/O packages are implemented using Unix I/O functions
– Unix I/O provides functions for accessing file metadata

Cons
– Dealing with short counts is tricky and error prone
– Efficient reading of text lines requires some form of buffering, 

also tricky and error prone
– Both of these issues are addressed by the standard I/O

31
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Pros/cons of Standard I/O

Pros:
– Buffering increases efficiency by decreasing the number of 
read and write system calls

– Short counts are handled automatically
Cons:
– Provides no function for accessing file metadata
– Standard I/O is not appropriate for input and output on network 

sockets
– There are poorly documented restrictions on streams that 

interact badly with restrictions on sockets

32
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Choosing I/O Functions

General rule: Use the highest-level I/O functions you 
can.
– Many C programmers are able to do all of their work using the 

standard I/O functions.
When to use standard I/O?
– When working with disk or terminal files.

When to use raw Unix I/O 
– When you need to fetch file metadata.
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Summary

System level I/O from the programmer perspective
– For the underlying details – EECS 343

Next time
– There is no next time L
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