Review sheet for final exam

The format of the final exam will be similar to that of the midterm. You will not be tested directly on
data structures covered in the midterm, but if you are asked to select the best structure for a particular
situation, you should consider all data structures discussed in the course (including those from the first half).

Study the algorithms we have discussed.

The exam will be closed book/closed notes.

Topics

The topics that the final exam will concentrate on are:

1.

C++/STL
You may have to write small snippets of code. These must be syntactically /semantically correct to
receive full credit.

Complexity analysis

You should be able to evaluate an algorithm'’s efficiency (time and space) using big-Oh notation. In
addition, you are expected to know the time complexity of various data structures’ basic operations
(e.g. search, insert, etc) or deduce the complexity of new operations.

Sorting

Insertion Sort, Heapsort, Quicksort, Mergesort, Counting Sort. Lower bounds for comparison sorts.
Stable sorting algorithms. Running times. The importance of selecting a good pivot in Quicksort.
Using Quicksort to solve the selection problem. Using Quicksort in conjunction with Insertion Sort.
Choosing the best sorting algorithm for a particular situation (e.g. a situation that requires a stable
algorithm, one where the input is partially sorted, etc.)

Tries
What are tries, how are they organized? Running times and applications. Advantages and disadvan-
tages of compressed tries. PATRICIA trees.

B-trees
In what situations are B-trees used? Insert/Delete, running times. What are B* and B+ trees? When
do we use them?

Hashing

Definition, applications. How do we choose a hash function? How can collisions be resolved? Chaining
and open addressing (linear probing, quadratic probing, double hashing). When is rehashing necessary?
Apply and compare methods for resolving collisions. Running times.

Disjoint Sets
Definition, applications, implementations, operations and running times.

Graphs

Definitions, representation, depth-first and breadth-first traversals. How can we use breadth-first
traversal to solve the Shortest Path problem? Dijkstra’s algorithm for single-source shortest paths.
Topological Sort (as an application of depth-first traversal). You should be able to apply the algorithm
and show the time stamps. Kruskal’s algorithm for the Minimum Spanning Tree problem. What data
structures are used in these algorithms’ implementations?

Graph-related terms you’ll be expected to know: degree of a vertex, adjacent vertices, edges incident
to a vertex, paths, weighted graphs, complete graphs, cycles, connected graphs, directed/undirected
graphs. You should be able to answer short questions like ”What is the number of edges in a complete
graph?”, ”Why is the size of an adjacency list representation O(|V| + |E|)?”.

Things NOT on the exam

Top-down splaying. Insert/Delete in B* and B+ trees. Universal Hashing.

Format of the exam

The final exam will be similar to the midterm. There will be some questions that require short answers, some
questions where you have to select the best data structure for the job, questions where you’ll have to apply
some algorithm (e.g. an MST algorithm, an insert/delete/search on some data structure, etc), questions
where you may have to write some code or pseudocode, etc.

