
Lisp Users and Vendors ConferenceAugust 10, 1993Tutorial onGood Lisp ProgrammingStylePeter NorvigSun Microsystems Labs Inc.Kent PitmanHarlequin, Inc.Portions copyright c
 1992, 1993 Peter Norvig.Portions copyright c
 1992, 1993 Kent M. Pitman.All Rights Reserved. 1

Outline1. What is Good Style?2. Tips on Built-In Functionality3. Tips on Near-Standard Tools4. Kinds of Abstraction5. Programming in the Large6. Miscellaneous
2

1. What is Good Style?Good Lisp Programming Style\Elegance is not optional." { Richard A. O'KeefeGood style (in any language) leads to programs thatare:� Understandable� Reusable� Extensible� E�cient� Easy to develop/debugIt also helps correctness, robustness, compatibilityOur maxims of good style are:� Be explicit� Be speci�c� Be concise� Be consistent� Be helpful (anticipate the reader's needs)� Be conventional (don't be obscure)� Build abstractions at a usable level� Allow tools to interact (referential transparency)Good style is the \underware" that supports a program3

1.1. Where does good style come from?What To BelieveDon't believe everything we tell you. (Just most.)Worry less about what to believe and more about why.Know where your \Style Rules" come from:� Religion, Good vs. Evil \This way is better."� Philosophy \This is consistent with other things."� Robustness, Liability, Safety, Ethics \I'll put inredundant checks to avoid something horrible."� Legality \Our lawyers say do it this way."� Personality, Opinion \I like it this way."� Compatibility \Another tool expects this way."� Portability \Other compilers prefer this way."� Cooperation, Convention \It has to be donesome uniform way, so we agreed on this one."� Habit, Tradition \We've always done it this way."� Ability \My programmers aren't sophisticated enough."� Memory \Knowing how I would do it means Idon't have to remember how I did do it."� Superstition \I'm scared to do it di�erently."� Practicality \This makes other things easier."4

1.1. Where does good style come from?It's All About CommunicationExpression + Understanding = CommunicationPrograms communicate with:� Human readers� Compilers� Text editors (arglist, doc string, indent)� Tools (trace, step, apropos, xref, manual)� Users of the program (indirect communication)
5

1.1. Where does good style come from?Know the ContextWhen reading code:� Know who wrote it and when.When writing code:� Annotate it with comments.� Sign and date your comments!(Should be an editor command to do this)Some things to notice:� People's style changes over time.� The same person at di�erent times can seem likea di�erent person.� Sometimes that person is you. 6

1.2. How do I know if it's good?Value Systems Are Not AbsoluteStyle rules cannot be viewed in isolation.They often overlap in con
icting ways.The fact that style rules con
ict with one another re-
ects the natural fact that real-world goals con
ict.A good programmer makes trade-o�s in programmingstyle that re
ect underlying priority choices among var-ious major goals:� Understandable� Reusable� Extensible� E�cient (coding, space, speed, ...)� Easy to develop/debug
7

1.2. How do I know if it's good?Why Good Style is GoodGood style helps build the current program, and thenext one:� Organizes a program, relieving human memory needs� Encourages modular, reusable partsStyle is not just added at the end. It plays a part in:� Organization of the program into �les� Top-level design, structure and layout of each �le� Decomposition into modules and components� Data-structure choice� Individual function design/implementation� Naming, formatting, and documenting standards
8

1.2. How do I know if it's good?Why Style is Practical: Memory\When I was young, I could imagine a castle withtwenty rooms with each room having ten di�erent ob-jects in it. I would have no problem. I can't do thatanymore. Now I think more in terms of earlier experi-ences. I see a network of inchoate clouds, instead ofthe picture-postcard clearness. But I do write betterprograms." { Charles Simonyi\Some people are good programmers because they canhandle many more details than most people. But thereare a lot of disadvantages in selecting programmers forthat reason|it can result in programs no on else canmaintain." { Butler Lampson\Pick out any three lines in my program, and I can tellyou where they're from and what they do." { DavidMcDonaldGood style replaces the need for great memory:� Make sure any 3 (5? 10?) lines are self-explanatoryAlso called \referential transparency"Package complexity into objects and abstractions;not global variables/dependencies� Make it \fractally" self-organizing all the way up/down� Say what you mean� Mean what you say 9

1.2. How do I know if it's good?Why Style is Practical: ReuseStructured Programming encourages modules that meetspeci�cations and can be reused within the bounds ofthat speci�cation.Strati�ed Design encourages modules with commonly-needed functionality, which can be reused even whenthe speci�cation changes, or in another program.Object-Oriented Design is strati�ed design that con-centrates on classes of objects and on information hid-ing.You should aim to reuse:� Data types (classes)� Functions (methods)� Control abstractions� Interface abstractions (packages, modules)� Syntactic abstractions (macros and whole languages)10

1.2. How do I know if it's good?Say What You Mean\Say what you mean, simply and directly." { Kernighan& PlaugerSay what you mean in data (be speci�c, concise):� Use data abstractions� De�ne languages for data, if needed� Choose names wiselySay what you mean in code (be concise, conventional):� De�ne interfaces clearly� Use Macros and languages appropriately� Use built-in functions� Create your own abstractions� Don't do it twice if you can do it onceIn annotations (be explicit, helpful):� Use appropriate detail for comments� Documentation strings are better than comments� Say what it is for, not just what it does� Declarations and assertions� Systems (and test �les, etc.) 11

1.2. How do I know if it's good?Be ExplicitOptional and Keyword arguments.If you have to look up the default value, you need tosupply it. You should only take the default if you trulybelieve you don't care or if you're sure the default iswell-understood and well-accepted by all.For example, when opening a �le, you should almostnever consider omitting the :direction keyword argu-ment, even though you know it will default to :input.Declarations.If you know type information, declare it. Don't do whatsome people do and only declare things you know thecompiler will use. Compilers change, and you want yourprogram to naturally take advantage of those changeswithout the need for ongoing intervention.Also, declarations are for communication with humanreaders, too{not just compilers.Comments.If you're thinking of something useful that others mightwant to know when they read your code and that mightnot be instantly apparent to them, make it a comment.12

1.2. How do I know if it's good?Be Speci�cBe as speci�c as your data abstractions warrant,but no more.Choose:;; more specific ;; more abstract(mapc #'process-word (map nil #'process-word(first sentences)) (elt sentences 0))Most speci�c conditional:� if for two-branch expression� when, unless for one-branch statement� and, or for boolean value only� cond for multi-branch statement or expression;; Violates Expectation: ;; Follows Expectation:(and (numberp x) (cos x)) (and (numberp x) (> x 3))(if (numberp x) (cos x)) (if (numberp x) (cos x) nil)(if (numberp x) (print x)) (when (numberp x) (print x))13

1.2. How do I know if it's good?Be ConciseTest for the simplest case. If you make the same test(or return the same result) in two places, there mustbe an easier way.Bad: verbose, convoluted(defun count-all-numbers (alist)(cond((null alist) 0)(t (+ (if (listp (first alist))(count-all-numbers (first alist))(if (numberp (first alist)) 1 0))(count-all-numbers (rest alist))))))� Returns 0 twice� Nonstandard indentation� alist suggests association listGood:(defun count-all-numbers (exp)(typecase exp(cons (+ (count-all-numbers (first exp))(count-all-numbers (rest exp))))(number 1)(t 0)))cond instead of typecase is equally good (less speci�c,more conventional, consistent). 14

1.2. How do I know if it's good?Be ConciseMaximize LOCNW: lines of code not written.\Shorter is better and shortest is best."{ Jim MeehanBad: too verbose, ine�cient(defun vector-add (x y)(let ((z nil) n)(setq n (min (list-length x) (list-length y)))(dotimes (j n (reverse z))(setq z (cons (+ (nth j x) (nth j y)) z)))))(defun matrix-add (A B)(let ((C nil) m)(setq m (min (list-length A) (list-length B)))(dotimes (i m (reverse C))(setq C (cons (vector-add (nth i A)(nth i B)) C)))))� Use of nth makes this O(n2)� Why list-length? Why not length or mapcar?� Why not nreverse?� Why not use arrays to implement arrays?� The return value is hidden 15

1.2. How do I know if it's good?Be ConciseBetter: more concise(defun vector-add (x y)"Element-wise add of two vectors"(mapcar #'+ x y))(defun matrix-add (A B)"Element-wise add of two matrices (lists of lists)"(mapcar #'vector-add A B))Or use generic functions:(defun add (&rest args)"Generic addition"(if (null args)0(reduce #'binary-add args)))(defmethod binary-add ((x number) (y number))(+ x y))(defmethod binary-add ((x sequence) (y sequence))(map (type-of x) #'binary-add x y)) 16

1.2. How do I know if it's good?Be HelpfulDocumentation should be organized around tasks theuser needs to do, not around what your program hap-pens to provide. Adding documentation strings to eachfunction usually doesn't tell the reader how to use yourprogram, but hints in the right place can be very ef-fective.Good: (from Gnu Emacs online help)next-line: Move cursor vertically down ARG lines.: : : If you are thinking of using this in a Lisp program,consider using `forward-line' instead. It is usually eas-ier to use and more reliable (no dependence on goalcolumn, etc.).defun: de�nes NAME as a function. The de�nitionis (lambda ARGLIST [DOCSTRING] BODY...). See also thefunction interactive.These anticipate user's use and problems. 17

1.2. How do I know if it's good?Be ConventionalBuild your own functionality to parallel existing featuresObey naming conventions:with-something, dosomething macrosUse built-in functionality when possible� Conventional: reader will know what you mean� Concise: reader doesn't have to parse the code� E�cient: has been worked on heavilyBad: non-conventional(defun add-to-list (elt list)(cond ((member elt lst) lst)(t (cons elt lst))))Good: use a built-in function(left as an exercise)\Use library functions" { Kernighan & Plauger 18

1.2. How do I know if it's good?Be ConsistentSome pairs of operators have overlapping capabilities.Be consistent about which you use in neutral cases(where either can be used), so that it is apparent whenyou're doing something unusual.Here are examples involving let and let*. The �rstexploits parallel binding and the second sequential. Thethird is neutral.(let ((a b) (b a)) ...)(let* ((a b) (b (* 2 a)) (c (+ b 1))) ...)(let ((a (* x (+ 2 y))) (b (* y (+ 2 x)))) ...)Here are analogous examples using flet and labels.The �rst exploits closure over the local function, thesecond exploits non-closure. The third is neutral.(labels ((process (x) ... (process (cdr x)) ...)) ...)(flet ((foo (x) (+ (foo x) 1))) ...)(flet ((add3 (x) (+ x 3))) ...)In both cases, you could choose things the other wayaround, always using let* or labels in the neutral case,and let or flet in the unusual case. Consistency mat-ters more than the actual choice. Most people, how-ever, think of let and flet as the normal choices.19

1.2. How do I know if it's good?Choose the Right LanguageChoose the appropriate language, and use appropriatefeatures in the language you choose. Lisp is not theright language for every problem.\You got to dance with the one that brung you."{ Bear BryantLisp is good for:� Exploratory programming� Rapid prototyping� Minimizing time-to-market� Single-programmer (or single-digit team) projects� Source-to-source or data-to-data transformationCompilers and other translatorsProblem-speci�c languages� Dynamic dispatch and creation(compiler available at run-time)� Tight integration of modules in one image(as opposed to Unix's character pipe model)� High degree of interaction (read-eval-print, CLIM)� User-extensible applications (gnu emacs)\I believe good software is written by small teams oftwo, three, or four people interacting with each otherat a very high, dense level." { John Warnock 20

1.2. How do I know if it's good?Choose the Right Language\Once you are an experienced Lisp programmer, it'shard to return to any other language." { Robert R.KesslerCurrent Lisp implementations are not so good for:� Persistent storage (data base)� Maximizing resource use on small machines� Projects with hundreds of programmers� Close communication with foreign code� Delivering small-image applications� Real-time control (but Gensym did it)� Projects with inexperienced Lisp programmers� Some kinds of numerical or character computation(Works �ne with careful declarations, but the Lispe�ciency model is hard to learn.) 21

2. Tips on Built-in FunctionalityBuilt-in Functionality\No doubt about it, Common Lisp is a big language"{ Guy Steele� 622 built-in functions (in one pre-ANSI CL)� 86 macros� 27 special forms� 54 variables� 62 constantsBut what counts as the language itself?� C++ has 48 reserved words� ANSI CL is down to 25 special forms� The rest can be thought of as a required libraryEither way, the Lisp programmer needs some help:Which built-in functionality to make use ofHow to use it 22

2. Tips on Built-in FunctionalityDEFVAR and DEFPARAMETERUse defvar for things you don't want to re-initializeupon re-load.(defvar *options* '())(defun add-option (x) (pushnew x *options*))Here you might have done (add-option ...) manytimes before you re-load the �le{perhaps some evenfrom another �le. You usually don't want to throwaway all that data just because you re-load this de�ni-tion.On the other hand, some kinds of options do want toget re-initialized upon re-load...(defparameter *use-experimental-mode* nil"Set this to T when experimental code works.")Later you might edit this �le and set the variable to T,and then re-load it, wanting to see the e�ect of youredits.Recommendation: Ignore the part in CLtL that saysdefvar is for variables and defparameter is for parame-ters. The only useful di�erence between these is thatdefvar does its assignment only if the variable is un-bound, while defparameter does its assignment uncon-ditionally. 23

2. Tips on Built-in FunctionalityEVAL-WHEN(eval-when (:execute) ...)=(eval-when (:compile-toplevel) ...)+(eval-when (:load-toplevel) ...)Also, take care about explicitly nesting eval-when forms.The e�ect is not generally intuitive for most people.
24

2. Tips on Built-in FunctionalityFLET to Avoid Code DuplicationConsider the following example's duplicated use of(f (g (h))).(do ((x (f (g (h)))(f (g (h)))))(nil) ...)Every time you edit one of the (f (g (h)))'s, you prob-aby want to edit the other, too. Here is a better mod-ularity:(flet ((fgh () (f (g (h)))))(do ((x (fgh) (fgh))) (nil) ...))(This might be used as an argument against do.)Similarly, you might use local functions to avoid dupli-cation in code branches that di�er only in their dynamicstate. For example,(defmacro handler-case-if (test form &rest cases)(let ((do-it (gensym "DO-IT")))`(flet ((,do-it () ,form))(if test(handler-case (,do-it) ,@cases)(,do-it))))) 25

2. Tips on Built-in FunctionalityDEFPACKAGEProgramming in the large is supported by a design stylethat separates code into modules with clearly de�nedinterfaces.The Common Lisp package system serves to avoidname clashes between modules, and to de�ne the in-terface to each module.� There is no top level (be thread-safe)� There are other programs (use packages)� Make it easy for your consumersExport only what the consumer needs� Make it easy for maintainersLicense to change non-exported part(defpackage "PARSER"(:use "LISP" #+Lucid "LCL" #+Allegro "EXCL")(:export "PARSE" "PARSE-FILE" "START-PARSER-WINDOW""DEFINE-GRAMMAR" "DEFINE-TOKENIZER"))Some put exported symbols at the top of the �le wherethey are de�ned.We feel it is better to put them in the defpackage, anduse the editor to �nd the corresponding de�nitions.26

2. Tips on Built-in FunctionalityUnderstanding Conditions vs ErrorsLisp assures that most errors in code will not corruptdata by providing an active condition system.Learn the di�erence between errors and conditions.All errors are conditions; not all conditions are errors.Distinguish three concepts:� Signaling a condition|Detecting that something unusual has happened.� Providing a restart|Establishing one of possibly several options forcontinuing.� Handling a condition|Selecting how to proceed from available options.
27

2. Tips on Built-in FunctionalityError DetectionPick a level of error detection and handling that matchesyour intent. Usually you don't want to let bad data goby, but in many cases you also don't want to be in thedebugger for inconsequential reasons.Strike a balance between tolerance and pickiness thatis appropriate to your application.Bad: what if its not an integer?(defun parse-date (string)"Read a date from a string. ..."(multiple-value-bind (day-of-month string-position)(parse-integer string :junk-allowed t)...))Questionable: what if memory runs out?(ignore-errors (parse-date string))Better: catches expected errors only(handler-case (parse-date string)(parse-error nil)) 28

2. Tips on Built-in FunctionalityWriting Good Error Messages� Use full sentences in error messages (uppercaseinitial, trailing period).� No "Error: " or ";;" pre�x. The system will sup-ply such a pre�x if needed.� Do not begin an error message with a request fora fresh line. The system will do this automaticallyif necessary.� As with other format strings, don't use embeddedtab characters.� Don't mention the consequences in the error mes-sage. Just describe the situation itself.� Don't presuppose the debugger's user interface indescribing how to continue. This may cause porta-bility problems since di�erent implementations usedi�erent interfaces. Just describe the abstract ef-fect of a given action.� Specify enough detail in the message to distinguishit from other errors, and if you can, enough to helpyou debug the problem later if it happens. 29

2. Tips on Built-in FunctionalityWriting Good Error Messages (cont'd)Bad:(error "~%>> Error: Foo. Type :C to continue.")Better:(cerror "Specify a replacement sentence interactively.""An ill-formed sentence was encountered:~% ~A"sentence)
30

2. Tips on Built-in FunctionalityUsing the Condition SystemStart with these:� error, cerror� warn� handler-case� with-simple-restart� unwind-protectGood: standard use of warn(defvar *word* '?? "The word we are currently working on.")(defun lex-warn (format-str &rest args)"Lexical warning; like warn, but first tells what wordcaused the warning."(warn "For word ~a: ~?" *word* format-str args))
31

2. Tips on Built-in FunctionalityHANDLER-CASE, WITH-SIMPLE-RESTARTGood: handle speci�c errors(defun eval-exp (exp)"If possible evaluate this exp; otherwise return it.";; Guard against errors in evaluating exp(handler-case(if (and (fboundp (op exp))(every #'is-constant (args exp)))(eval exp)exp)(arithmetic-error () exp)))Good: provide restarts(defun top-level (&key (prompt "=> ") (read #'read)(eval #'eval) (print #'print))"A read-eval-print loop."(with-simple-restart(abort "Exit out of the top level.")(loop(with-simple-restart(abort "Return to top level loop.")(format t "~&~a" prompt)(funcall print (funcall eval (funcall read)))))))32

2. Tips on Built-in FunctionalityUNWIND-PROTECTunwind-protect implements important functionality thateveryone should know how to use. It is not just for sys-tem programmers.Watch out for multi-tasking, though. For example, im-plementing some kinds of state-binding with unwind-protectmight work well in a single-threaded environment, butin an environment with multi-tasking, you often haveto be a little more careful.(unwind-protect (progn form1 form2 ... formn)cleanup1 cleanup2 ... cleanupn)� Never assume form1 will get run at all.� Never assume formn won't run to completion.
33

2. Tips on Built-in FunctionalityUNWIND-PROTECT (cont'd)Often you need to save state before entering the unwind-protect,and test before you restore state:Possibly Bad: (with multi-tasking)(catch 'robot-op(unwind-protect(progn (turn-on-motor)(manipulate))(turn-off-motor)))Good: (safer)(catch 'robot-op(let ((status (motor-status motor)))(unwind-protect(progn (turn-on-motor motor)(manipulate motor))(when (motor-on? motor)(turn-off-motor motor))(setf (motor-status motor) status)))) 34

2. Tips on Built-in FunctionalityI/O Issues: Using FORMAT� Don't use Tab characters in format strings (or anystrings intended for output). Depending on whatcolumn your output starts in, the tab stops maynot line up the same on output as they did in thecode!� Don't use "#<~S ~A>" to print unreadable objects.Use print-unreadable-object instead.� Consider putting format directives in uppercase tomake them stand out from lowercase text sur-rounding.For example, "Foo: ~A" instead of "Foo: ~a".� Learn useful idioms. For example: ~{~A~^, ~} and~:p.� Be conscious of when to use ~& versus ~%.Also, "~2%" and "~2&" are also handy.Most code which outputs a single line should startwith ~& and end with ~%.(format t "~&This is a test.~%")This is a test.� Be aware of implementation extensions. They maynot be portable, but for non-portable code mightbe very useful. For example, Genera's ! and for handling indentation. 35

2. Tips on Built-in FunctionalityUsing Streams Correctly� *standard-output* and *standard-input* vs *terminal-io*Do not assume *standard-input* and *standard-output*will be bound to *terminal-io* (or, in fact, to anyinteractive stream). You can bind them to such astream, however.Try not to use *terminal-io* directly for input oroutput. It is primarily available as a stream towhich other streams may be bound, or may indi-rect (e.g., by synonym streams).� *error-output* vs *debug-io*Use *error-output* for warnings and error mes-sages that are not accompanied by any user inter-action.Use *debug-io* for interactive warnings, error mes-sages, and other interactions not related to thenormal function of a program.In particular, do not �rst print a message on *error-output*and then do a debugging session on *debug-io*, ex-pecting those to be the same stream. Instead, doeach interaction consistently on one stream.36

2. Tips on Built-in FunctionalityUsing Streams Correctly (cont'd)� *trace-output*This can be used for more than just receiving theoutput of trace. If you write debugging routinesthat conditionally print helpful information with-out stopping your running program, consider do-ing output to this stream so that if *trace-output*is redirected, your debugging output will too.A useful test: If someone re-bound only one of severalI/O streams you are using, would it make your outputlook stupid?
37

3. Tips on Near-Standard ToolsUsing Near-Standard ToolsSome functionality is not built in to the language, butis used by most programmers. This divides into exten-sions to the language and tools that help you developprograms.Extensions� defsystem to de�ne a program� CLIM, CLX, etc. graphics librariesTools� emacs from FSF, Lucidindentation, font/color supportde�nition/arglist/doc/regexp �ndingcommunication with lisp� xref, manual, etc. from CMU� Browsers, debuggers, pro�lers from vendors38

3. Tips on Near-Standard ToolsDEFSYSTEMPick a public domain version of defsystem (unfortu-nately, dpANS CL has no standard).� Put absolute pathnames in one place only� Load everything through the defsystem� Distinguish compiling from loading� Optionally do version control(defpackage "PARSER" ...)(defsystem parser(:source "/lab/indexing/parser/*")(:parts utilities "macros" "grammar" "tokenizer""optimizer" "debugger" "toplevel"#+CLIM "clim-graphics" #+CLX "clx-graphics"))� Make sure your system loads with no compilerwarnings(�rst time and subsequent times)(learn to use (declare (ignore ...)))� Make sure the system can be compiled from scratch(eliminate lingering bootstrapping problems)39

3. Tips on Near-Standard ToolsEditor CommandsYour editor should be able to do the following:� Move about by s-expressions and show matchingparens� Indent code properly� Find unbalanced parens� Adorn code with fonts and colors� Find the de�nition of any symbol� Find arguments or documentation for any symbol� Macroexpand any expression� Send the current expression, region or �le to Lispto be evaluated or compiled� Keep a history of commands sent to Lisp and allowyou to edit and resend them� Work with keyboard, mouse, and menusEmacs can do all these things. If your editor can't,complain until it is �xed, or get a new one. 40

3. Tips on Near-Standard ToolsEmacs: Indentation and CommentsDon't try to indent yourself.Instead, let the editor do it.A near-standard form has evolved.� 80-column maximum width� Obey comment conventions; for inline comment;; for in-function comment;;; for between-function comment;;;; for section header (for outline mode)� cl-indent library can be told how to indent(put 'defvar 'common-lisp-indent-function '(4 2 2))� lemacs can provide fonts, color(hilit::modes-list-update "Lisp"'((";;.*" nil hilit2) ...))
41

4. AbstractionAbstractionAll programming languages allow the programmer tode�ne abstractions. All modern languages provide sup-port for:� Data Abstraction (abstract data types)� Functional Abstraction (functions, procedures)Lisp and other languages with closures (e.g., ML, Sather)support:� Control Abstraction (de�ning iterators and othernew
ow of control constructs)Lisp is unique in the degree to which it supports:� Syntactic Abstraction (macros, whole new lan-guages) 42

4. AbstractionDesign: Where Style Begins\The most important part of writing a program is de-signing the data structures. The second most impor-tant part is breaking the various code pieces down."{ Bill Gates\Expert engineers stratify complex designs. : : :Theparts constructed at each level are used as primitivesat the next level. Each level of a strati�ed design canbe thought of as a specialized language with a varietyof primitives and means of combination appropriate tothat level of detail." { Harold Abelson and GeraldSussman\Decompose decisions as much as possible. Untangleaspects which are only seemingly independent. Deferthose decisions which concern details of representationas long as possible." { Niklaus WirthLisp supports all these approaches:� Data Abstraction: classes, structures, deftype� Functional Abstraction: functions, methods� Interface Abstraction: packages, closures� Object-Oriented: CLOS, closures� Strati�ed Design: closures, all of above� Delayed Decisions: run-time dispatch 43

4. AbstractionDesign: Decomposition\A Lisp procedure is like a paragraph."{ Deborah Tatar\You should be able to explain any module in one sen-tence." { Wayne Ratli�� Strive for simple designs� Break the problem into partsDesign useful subparts (strati�ed)Be opportunistic; use existing tools� Determine dependenciesRe-modularize to reduce dependenciesDesign most dependent parts �rstWe will cover the following kinds of abstraction:� Data abstraction� Functional abstraction� Control abstraction� Syntactic abstraction 44

4.1. Data AbstractionData AbstractionWrite code in terms of the problem's data types, notthe types that happen to be in the implementation.� Use defstruct or defclass for record types� Use inline functions as aliases (not macros)� Use deftype� Use declarations and :type slotsfor e�ciency and/or documentation� Variable names give informal type informationPretty Good: speci�es some type info(defclass event ()((starting-time :type integer)(location :type location)(duration :type integer :initform 0)))Better: problem-speci�c type info(deftype time () "Time in seconds" 'integer)(defconstant +the-dawn-of-time+ 0"Midnight, January 1, 1900"(defclass event ()((starting-time :type time :initform +the-dawn-of-time+)(location :type location)(duration :type time :initform 0))) 45

4.1. Data AbstractionUse Abstract Data TypesIntroduce abstract data types with accessors:Bad: obscure accessor, eval(if (eval (cadar rules)) ...)Better: introduce names for accessors(declaim (inline rule-antecedent))(defun rule-antecedent (rule) (second rule))(if (holds? (rule-antecedent (first rules))) ...)Usually Best: introduce �rst-class data type(defstruct rulename antecedent consequent)or(defstruct (rule (:type list))name antecedent consequent)or(defclass rule ()(name antecedent consequent)) 46

4.1. Data AbstractionImplement Abstract Data TypesKnow how to map from common abstract data typesto Lisp implementations.� Set: list, bit-vector, integer, any table type� Sequence: list, vector, delayed-evaluation stream� Stack: list, vector (with �ll-pointer)� Queue: tconc, vector (with �ll-pointer)� Table: hash table, alist, plist, vector� Tree, Graph: cons, structures, vector, adjacencymatrixUse implementations that are already supported (e.g.union, intersection, length for sets as lists; logior,logand, logcount for sets as integers.Don't be afraid to build a new implementation if pro-�ling reveals a bottleneck. (If Common Lisp's hashtables are too ine�cient for your application, considerbuilding a specialized hash table in Lisp before you builda specialized hash table in C.) 47

4.1. Data AbstractionInherit from Data TypesReuse by inheritance as well as direct use� structures support single inheritance� classes support multiple inheritance� both allow some over-riding� classes support mixinsConsider a class or structure for the whole program� Eliminates clutter of global variables� Thread-safe� Can be inherited and modi�ed
48

4.2. Functional AbstractionFunctional AbstractionEvery function should have:� A single speci�c purpose� If possible, a generally useful purpose� A meaningful name(names like recurse-aux indicate problems)� A structure that is simple to understand� An interface that is simple yet general enough� As few dependencies as possible� A documentation string
49

4.2. Functional AbstractionDecompositionDecompose an algorithm into functions that are simple,meaningful and useful.Example from comp.lang.lisp discussion of loop vs. map:(defun least-common-superclass (instances)(let ((candidates(reduce #'intersection(mapcar #'(lambda (instance)(clos:class-precedence-list(class-of instance)))instances)))(best-candidate (find-class t)))(mapl#'(lambda (candidates)(let ((current-candidate (first candidates))(remaining-candidates (rest candidates)))(when (and (subtypep current-candidatebest-candidate)(every#'(lambda (remaining-candidate)(subtypep current-candidateremaining-candidate))remaining-candidates))(setf best-candidate current-candidate))))candidates)best-candidate)) 50

4.2. Functional AbstractionDecompositionVery Good: Chris Riesbeck(defun least-common-superclass (instances)(reduce #'more-specific-class(common-superclasses instances):initial-value (find-class 't)))(defun common-superclasses (instances)(reduce #'intersection(superclass-lists instances)))(defun superclass-lists (instances)(loop for instance in instancescollect (clos:class-precedence-list(class-of instance))))(defun more-specific-class (class1 class2)(if (subtypep class2 class1) class2 class1))� Each function is very understandable� Control structure is clear:Two reduces, an intersection and a loop/collect� But reusablity is fairly low 51

4.2. Functional AbstractionDecompositionEqually Good: and more reusable(defun least-common-superclass (instances)"Find a least class that all instances belong to."(least-upper-bound (mapcar #'class-of instances)#'clos:class-precedence-list#'subtypep))(defun least-upper-bound (elements supers sub?)"Element of lattice that is a super of all elements."(reduce #'(lambda (x y)(binary-least-upper-bound x y supers sub?))elements))(defun binary-least-upper-bound (x y supers sub?)"Least upper bound of two elements."(reduce-if sub? (intersection (funcall supers x)(funcall supers y))))(defun reduce-if (pred sequence)"E.g. (reduce-if #'> numbers) computes maximum"(reduce #'(lambda (x y) (if (funcall pred x y) x y))sequence))� Individual functions remain understandable� Still 2 reduces, an intersection and a mapcar� Strati�ed design yields more useful functions52

4.2. Functional AbstractionRule of English TranslationTo insure that you say what you mean:1. Start with an English description of algorithm2. Write the code from the description3. Translate the code back into English4. Compare 3 to 1Example:1. \Given a list of monsters, determine the numberthat are swarms."2. (defun count-swarm (monster-list)(apply '+(mapcar#'(lambda (monster)(if (equal (object-type(get-object monster))'swarm)10))monster-list)))3. \Take the list of monsters and produce a 1 fora monster whose type is swarm, and a 0 for theothers. Then add up the list of numbers." 53

4.2. Functional AbstractionRule of English TranslationBetter:1. \Given a list of monsters, determine the numberthat are swarms."2. (defun count-swarms (monster-names)"Count the swarms in a list of monster names."(count-if #'swarm-p monster-names :key #'get-object))or(count 'swarm monster-names :key #'get-object-type)or(loop for name in monster-namescount (swarm-p (get-object monster)))3. \Given a list of monster names, count the numberthat are swarms." 54

4.2. Functional AbstractionUse Library FunctionsLibraries may have access to low-level e�ciency hacks,and are often �ne-tuned.BUT they may be too general, hence ine�cient.Write a speci�c version when e�ciency is a problem.Good: speci�c, concise(defun find-character (char string)"See if the character appears in the string."(find char string))Good: e�cient(defun find-character (char string)"See if the character appears in the string."(declare (character char) (simple-string string))(loop for ch across stringwhen (eql ch char) return ch)) 55

4.2. Functional AbstractionUse Library FunctionsGiven build1, which maps n to a list of n x's:(build1 4)) (x x x x)Task: De�ne build-it so that:(build-it '(4 0 3))) ((x x x x) () (x x x))Incredibly Bad:(defun round3 (x)(let ((result '()))(dotimes (n (length x) result)(setq result (cons (car (nthcdr n x)) result)))))(defun build-it (arg-list)(let ((result '()))(dolist (a (round3 arg-list) result)(setq result (cons (build1 a) result)))))Problems:� round3 is just another name for reverse� (car (nthcdr n x)) is (nth n x)� dolist would be better than dotimes here� push would be appropriate here� (mapcar #'build1 numbers) does it all 56

4.3. Control AbstractionControl AbstractionMost algorithms can be characterized as:� Searching (some find find-if mismatch)� Sorting (sort merge remove-duplicates)� Filtering (remove remove-if mapcan)� Mapping (map mapcar mapc)� Combining (reduce mapcan)� Counting (count count-if)These functions abstract common control patterns.Code that uses them is:� Concise� Self-documenting� Easy to understand� Often reusable� Usually e�cient(Better than a non-tail recursion)Introducing your own control abstraction is an impor-tant part of strati�ed design. 57

4.3. Control AbstractionRecursion vs. IterationRecursion is good for recursive data structures. Manypeople prefer to view a list as a sequence and use iter-ation over it, thus de-emphasizing the implementationdetail that the list is split into a �rst and rest.As an expressive style, tail recursion is often consideredelegant. However, Common Lisp does not guaranteetail recursion elimination so it should not be used asa substitute for iteration in completely portable code.(In Scheme it is �ne.)The Common Lisp do macro can be thought of as syn-tactic sugar for tail recursion, where the initial valuesfor variables are the argument values on the �rst func-tion call, and the step values are argument values forsubsequent function calls.do provides a low level of abstraction, but versatile andhas a simple, explicit execution model. 58

4.3. Control AbstractionRecursion vs. Iteration (cont'd)Bad: (in Common Lisp)(defun any (lst)(cond ((null lst) nil)((car lst) t)(t (any (cdr lst)))))Better: conventional, concise(defun any (list)"Return true if any member of list is true."(some #'not-null list))or (find-if-not #'null lst)or (loop for x in list thereis x)or (explicit)(do ((list list (rest list)))((null list) nil)(when (first list))(return t))))Best: e�cient, most concise in this caseDon't call any at all!Use (some p list) instead of (any (mapcar p list))59

4.3. Control AbstractionLOOP\Keep a loop to one topic|like a letter to yourSenator." { Judy AndersonThe Common Lisp loop macro gives you the power toexpress idiomatic usages concisely. However it bearsthe burden that its syntax and semantics are often sub-stantially more complex than its alternatives.Whether or not to use the loop macro is an issue sur-rounded in controversy, and borders on a religious war.At the root of the con
ict is the following somewhatparadoxical observation:� loop appeals to naive programmers because it lookslike English and seems to call for less knowledgeof programming than its alternatives.� loop is not English; its syntax and semantics havesubtle intricacies that have been the source ofmany programming bugs. It is often best usedby people who've taken the time to study and un-derstand it|usually not naive programmers.Use the unique features of loop (e.g., parallel iterationof di�erent kinds). 60

4.3. Control AbstractionSimple IterationBad: verbose, control structure unclear(LOOP(SETQ *WORD* (POP *SENTENCE*)) ;get the next word(COND;; if no more words then return instantiated CD form;; which is stored in the variable *CONCEPT*((NULL *WORD*)(RETURN (REMOVE-VARIABLES (VAR-VALUE '*CONCEPT*))))(T (FORMAT T "~%~%Processing ~A" *WORD*)(LOAD-DEF) ; look up requests under; this word(RUN-STACK))))) ; fire requests� No need for global variables� End test is misleading� Not immediately clear what is done to each wordGood: conventional, concise, explicit(mapc #'process-word sentence)(remove-variables (var-value '*concept*))(defun process-word (word)(format t "~2%Processing ~A" word)(load-def word)(run-stack)) 61

4.3. Control AbstractionMappingBad: verbose; (extract-id-list 'l_user-recs) ------------- [lambda]; WHERE: l_user-recs is a list of user records; RETURNS: a list of all user id's in l_user-recs; USES: extract-id; USED BY: process-users, sort-users(defun extract-id-list (user-recs)(prog (id-list)loop(cond ((null user-recs);; id-list was constructed in reverse order;; using cons, so it must be reversed now:(return (nreverse id-list))))(setq id-list (cons (extract-id (car user-recs))id-list))(setq user-recs (cdr user-recs)) ;next user record(go loop)))Good: conventional, concise(defun extract-id-list (user-record-list)"Return the user ID's for a list of users."(mapcar #'extract-id user-record-list)) 62

4.3. Control AbstractionCountingBad: verbose(defun size ()(prog (size idx)(setq size 0 idx 0)loop(cond ((< idx table-size)(setq size (+ size (length (aref table idx)))idx (1+ idx))(go loop)))(return size)))Good: conventional, concise(defun table-count (table) ; Formerly called SIZE"Count the number of keys in a hash-like table."(reduce #'+ table :key #'length))Also, it couldn't hurt to add:(deftype table ()"A table is a vector of buckets, where each bucketholds an alist of (key . values) pairs."'(vector cons)) 63

4.3. Control AbstractionFilteringBad: verbose(defun remove-bad-pred-visited (l badpred closed);;; Returns a list of nodes in L that are not bad;;; and are not in the CLOSED list.(cond ((null l) l)((or (funcall badpred (car l))(member (car l) closed))(remove-bad-pred-visited(cdr l) badpred closed))(t (cons (car l)(remove-bad-pred-visited(cdr l) badpred closed)))))Good: conventional, concise(defun remove-bad-or-closed-nodes (nodes bad-node? closed)"Remove nodes that are bad or are on closed list"(remove-if #'(lambda (node)(or (funcall bad-node? node)(member node closed)))nodes)) 64

4.3. Control AbstractionControl Flow: Keep It SimpleNon-local control
ow is hard to understandBad: verbose, violates referential transparency(defun isa-test (x y n)(catch 'isa (isa-test1 x y n)))(defun isa-test1 (x y n)(cond ((eq x y) t)((member y (get x 'isa)) (throw 'isa t))((zerop n) nil)(t (any (mapcar#'(lambda (xx)(isa-test xx y (1- n)))(get x 'isa))))))Problems:� catch/throw is gratuitous� member test may or may not be helping� mapcar generates garbage� any tests too late;throw tries to �x thisresult is that any never gets called! 65

4.3. Control AbstractionKeep It SimpleSome recommendations for use of catch and throw:� Use catch and throw as sub-primitives when imple-menting more abstract control structures as macros,but do not use them in normal code.� Sometimes when you establish a catch, programsmay need to test for its presence. In that case,restarts may be more appropriate.
66

4.3. Control AbstractionKeep It SimpleGood:(defun isa-test (sub super max-depth)"Test if SUB is linked to SUPER by a chain of ISAlinks shorter than max-depth."(and (>= max-depth 0)(or (eq sub super)(some #'(lambda (parent)(isa-test parent super(- max-depth 1)))(get sub 'isa)))))Also good: uses tools(defun isa-test (sub super max-depth)(depth-first-search :start sub :goal (is super):successors #'get-isa:max-depth max-depth))\Write clearly|don't be too clever."{ Kernighan & PlaugerBe Aware:Does \improving" something change the semantics?Does that matter? 67

4.3. Control AbstractionAvoid Complicated Lambda ExpressionsWhen a higher-order function would need a compli-cated lambda expression, consider alternatives:� dolist or loop� generate an intermediate (garbage) sequence� Series� Macros or read macros� local function{ Speci�c: makes it clear where function is used{ Doesn't clutter up global name space{ Local variables needn't be arguments{ BUT: some debugging tools won't work
68

4.3. Control AbstractionAvoid Complicated Lambda ExpressionsFind the sum of the squares of the odd numbers in alist of integers:All Good:(reduce #'+ numbers:key #'(lambda (x) (if (oddp x) (* x x) 0)))(flet ((square-odd (x) (if (oddp x) (* x x) 0)))(reduce #'+ numbers :key #'square-odd))(loop for x in listwhen (oddp x) sum (* x x))(collect-sum (choose-if #'oddp numbers))Also consider: (may be appropriate sometimes);; Introduce read macro:(reduce #'+ numbers :key #L(if (oddp _) (* _ _) 0));; Generate intermediate garbage:(reduce #'+ (remove #'evenp (mapcar #'square numbers)))69

4.3. Control AbstractionFunctional vs. Imperative StyleIt has been argued that imperative style programs areharder to reason about. Here is a bug that stems froman imperative approach:Task: Write a version of the built-in function find.Bad: incorrect(defun i-find (item seq &key (test #'eql) (test-not nil)(start 0 s-flag) (end nil)(key #'identity) (from-end nil))(if s-flag (setq seq (subseq seq start)))(if end (setq seq (subseq seq 0 end)))...)Problems:� Taking subsequences generates garbage� No appreciation of list/vector di�erences� Error if both start and end are givenError stems from the update to seq 70

4.3. Control AbstractionExample: Simpli�cationTask: a simpli�er for logical expressions:(simp '(and (and a b) (and (or c (or d e)) f)))) (AND A B (OR C D E) F)Not bad, but not perfect:(defun simp (pred)(cond ((atom pred) pred)((eq (car pred) 'and)(cons 'and (simp-aux 'and (cdr pred))))((eq (car pred) 'or)(cons 'or (simp-aux 'or (cdr pred))))(t pred)))(defun simp-aux (op preds)(cond ((null preds) nil)((and (listp (car preds))(eq (caar preds) op))(append (simp-aux op (cdar preds))(simp-aux op (cdr preds))))(t (cons (simp (car preds))(simp-aux op (cdr preds))))))71

4.3. Control AbstractionA Program to Simplify ExpressionsProblems:� No meaningful name for simp-aux� No reusable parts� No data accessors� (and), (and a) not simpli�edBetter: usable tools(defun simp-bool (exp)"Simplify a boolean (and/or) expression."(cond ((atom exp) exp)((member (op exp) '(and or))(maybe-add (op exp)(collect-args(op exp)(mapcar #'simp-bool (args exp)))))(t exp)))(defun collect-args (op args)"Return the list of args, splicing in argsthat have the given operator, op. Useful forsimplifying exps with associate operators."(loop for arg in argswhen (starts-with arg op)nconc (collect-args op (args arg))else collect arg)) 72

4.3. Control AbstractionBuild Reusable Tools(defun starts-with (list element)"Is this a list that starts with the given element?"(and (consp list)(eql (first list) element)))(defun maybe-add (op args &optional(default (get-identity op)))"If 1 arg, return it; if 0, return the default.If there is more than 1 arg, cons op on them.Example: (maybe-add 'progn '((f x))) ==> (f x)Example: (maybe-add '* '(3 4)) ==> (* 3 4).Example: (maybe-add '+ '()) ==> 0,assuming 0 is defined as the identity for +."(cond ((null args) default)((length=1 args) (first args))(t (cons op args))))(deftable identity:init '((+ 0) (* 1) (and t) (or nil) (progn nil)))73

4.4. Syntactic AbstractionA Language for SimplifyingTask: A Simpli�er for all Expressions:(simplify '(* 1 (+ x (- y y)))) ==> x(simplify '(if (= 0 1) (f x))) ==> nil(simplify '(and a (and (and) b))) ==> (and a b)Syntactic abstraction de�nes a new language that isappropriate to the problem.This is a problem-oriented (as opposed to code-oriented)approach.De�ne a language for simpli�cation rules, then writesome:(define-simplifier exp-simplifier((+ x 0) ==> x)((+ 0 x) ==> x)((- x 0) ==> x)((- x x) ==> 0)((if t x y) ==> x)((if nil x y) ==> y)((if x y y) ==> y)((and) ==> t)((and x) ==> x)((and x x) ==> x)((and t x) ==> x)...) 74

4.4. Syntactic AbstractionDesign Your Language Carefully\The ability to change notations empowers humanbeings." { Scott KimBad: verbose, brittle(setq times0-rule '(simplify(* (? e1) 0)0times0-rule))(setq rules (list times0-rule ...))� Insu�cient abstraction� Requires naming times0-rule three times� Introduces unneeded global variables� Unconventional indentationSometimes it is useful to name rules:(defrule times0-rule(* ?x 0) ==> 0)(Although I wouldn't recommend it in this case.)75

4.4. Syntactic AbstractionAn Interpreter for SimplifyingNow write an interpreter (or a compiler):(defun simplify (exp)"Simplify expression by first simplifying components."(if (atom exp)exp(simplify-exp (mapcar #'simplify exp))))(defun-memo simplify-exp (exp)"Simplify expression using a rule, or math.";; The expression is non-atomic.(rule-based-translator exp *simplification-rules*:rule-pattern #'first:rule-response #'third:action #'simplify:otherwise #'eval-exp))This solution is good because:� Simpli�cation rules are easy to write� Control
ow is abstracted away (mostly)� It is easy to verify the rules are correct� The program can quickly be up and running.If the approach is su�cient, we're done.If the approach is insu�cient, we've saved time.If it is just slow, we can improve the tools,and other uses of the tools will bene�t too.76

4.4. Syntactic AbstractionAn Interpreter for Translating\Success comes from doing the same thing over andover again; each time you learn a little bit and you doa little better the next time." { Jonathan SachsAbstract out the rule-based translator:(defun rule-based-translator(input rules &key (matcher #'pat-match)(rule-pattern #'first) (rule-response #'rest)(action #identity) (sub #'sublis)(otherwise #'identity))"Find the first rule that matches input, and apply theaction to the result of substituting the match resultinto the rule's response. If no rule matches, applyotherwise to the input."(loop for rule in rulesfor result = (funcall matcher(funcall rule-pattern rule) input)when (not (eq result fail))do (RETURN (funcall action(funcall sub result(funcall rule-response rule))))finally (RETURN (funcall otherwise input))))If this implementation is too slow, we can index betteror compile.Sometimes, reuse is at an informal level: seeing howthe general tool is built allows a programmer to con-struct a custom tool with cut and paste. 77

4.4. Syntactic AbstractionSaving duplicate work: defun-memoLess extreme than de�ning a whole new language is toaugment the Lisp language with new macros.defun-memo makes a function remember all computa-tions it has made. It does this by maintaining a hashtable of input/output pairs. If the �rst argument is justthe function name, 1 of 2 things happen: [1] If thereis exactly 1 arg and it is not a &rest arg, it makes aeql table on that arg. [2] Otherwise, it makes an equaltable on the whole arglist.You can also replace fn-name with (name :test ... :size... :key-exp ...). This makes a table with given testand size, indexed by key-exp. The hash table can becleared with the clear-memo function.Examples:(defun-memo f (x) ;; eql table keyed on x(complex-computation x))(defun-memo (f :test #'eq) (x) ;; eq table keyed on x(complex-computation x))(defun-memo g (x y z) ;; equal table(another-computation x y z)) ;; keyed on on (x y . z)(defun-memo (h :key-exp x) (x &optional debug?);; eql table keyed on x...) 78

4.4. Syntactic AbstractionSaving Duplicate Work: defun-memo(defmacro defun-memo (fn-name-and-options (&rest args)&body body);; Documentation string on previous page(let ((vars (arglist-vars args)))(flet ((gen-body (fn-name &key (test '#'equal)size key-exp)`(eval-when (load eval compile)(setf (get ',fn-name 'memoize-table)(make-hash-table :test ,test,@(when size `(:size ,size))))(defun ,fn-name ,args(gethash-or-set-default,key-exp(get ',fn-name 'memoize-table)(progn ,@body))))));; Body of the macro:(cond ((consp fn-name-and-options);; Use user-supplied keywords, if any(apply #'gen-body fn-name-and-options))((and (= (length vars) 1)(not (member '&rest args)));; Use eql table if it seems reasonable(gen-body fn-name-and-options :test '#'eql:key-exp (first vars)))(t ; Otherwise use equal table on all args(gen-body fn-name-and-options :test '#'equal:key-exp `(list* ,@vars)))))))79

4.4. Syntactic AbstractionMore Macros(defmacro with-gensyms (symbols body)"Replace the given symbols with gensym-ed versions,everywhere in body. Useful for macros.";; Does this everywhere, not just for "variables"(sublis (mapcar #'(lambda (sym)(cons sym (gensym (string sym))))symbols)body))(defmacro gethash-or-set-default (key table default)"Get the value from table, or set it to the default.Doesn't evaluate the default unless needed."(with-gensyms (keyvar tabvar val found-p)`(let ((keyvar ,key)(tabvar ,table))(multiple-value-bind (val found-p)(gethash keyvar tabvar)(if found-pval(setf (gethash keyvar tabvar),default)))))) 80

4.4. Syntactic AbstractionUse Macros Appropriately(See tutorial by Allan Wechsler)The design of macros:� Decide if a macro is really necessary� Pick a clear, consistent syntax for the macro� Figure out the right expansion� Use defmacro and ` to implement the mapping� In most cases, also provide a functional interface(useful, sometimes easier to alter and continue)Things to think about:� Don't use a macro where a function would su�ce� Make sure nothing is done at expansion time (mostly)� Evaluate args left-to-right, once each (if at all)� Don't clash with user names (with-gensyms)81

4.4. Syntactic AbstractionProblems with MacrosBad: should be an inline function(defmacro name-part-of (rule)`(car ,rule))Bad: should be a function(defmacro defpredfun (name evaluation-function)`(push (make-predfun :name ,name:evaluation-function ,evaluation-function)*predicate-functions*))Bad: works at expansion time(defmacro defclass (name &rest def)(setf (get name 'class) def)...(list 'quote name))
82

4.4. Syntactic AbstractionProblems with MacrosBad: Macros should not eval args(defmacro add-person (name mother father sexunevaluated-age)(let ((age (eval unevaluated-age)))(list (if (< age 16)) ...)))(add-person bob joanne jim male (compute-age 1953))What if you compiled this call now and loaded it in afew years?Better: Let the compiler constant-fold(declaim (inline compute-age))(defmacro add-person (name mother father sex age)`(funcall (if (< ,age 16)) ...)))Very Bad: (what if increment is n?)(defmacro for ((variable start end &optional increment)&body body)(if (not (numberp increment)) (setf increment 1))...)(for (i 1 10) ...) 83

4.4. Syntactic AbstractionMacros for Control StructuresGood: �lls a hole in orthogonality of CL(defmacro dovector ((var vector &key (start 0) end)&body body)"Do body with var bound to each element of vector.You can specify a subrange of the vector."`(block nil(map-vector #'(lambda (,var) ,@body),vector :start start :end end)))(defun map-vector (fn vector &key (start 0) end)"Call fn on each element of vector within a range."(loop for i from start below (or end (length vector))do (funcall fn (aref vector-var index))))� Iterates over a common data type� Follows established syntax (dolist, dotimes)� Obeys declarations, returns� Extends established syntax with keywords� One bad point:No result as in dolist, dotimes 84

4.4. Syntactic AbstractionHelper Functions For MacrosMost macros should expand into a call to a function.The real work of the macro dovector is done by a func-tion, map-vector because:� It's easier to patch� It's separately callable (useful for program)� The resulting code is smaller� If prefered, the helper can be made inline(Often good to avoid consing closures)(dovector (x vect) (print x))macro-expands to:(block nil(map-vector #'(lambda (x) (print x)) vect:start 0 :end nil))which inline expands to (roughly):(loop for i from 0 below (length vect)do (print (aref vect i))) 85

4.4. Syntactic AbstractionSetf MethodsAs in macros, we need to be sure to evaluate each formexactly once, in left-to-right order.Make sure macro expansions (macroexpand, get-setf-method)are done in the right environment.(defmacro deletef (item sequence &rest keys&environment environment)"Destructively delete item from sequence."(multiple-value-bind (temps vals stores store-formaccess-form)(get-setf-method sequence environment)(assert (= (length stores) 1))(let ((item-var (gensym "ITEM")))`(let* ((,item-var ,item),@(mapcar #'list temps vals)(,(first stores)(delete ,item-var ,access-form ,@keys))),store-form)))) 86

5. Programming in the LargeProgramming in the LargeBe aware of stages of software development:� Gathering requirements� Architecture� Component Design� Implementation� Debugging� TuningThese can overlap. The point of exploratory program-ming is to minimize component design time, gettingquickly to implementation in order to decide if the ar-chitecture and requirements are right.Know how to put together a large program:� Using packages� Using defsystem� Separating source code into �les� Documentation in the large� Portability� Error handling� Interfacing with non-Lisp programs 87

5. Programming in the LargeSeparating Source Code into FilesThe following factors a�ect how code is decomposedinto �les� Language-imposed dependenciesmacros, inline functions, CLOS classes before use� Strati�ed designisolate reusable components� Functional decompositiongroup related components� Compatibility with toolschose good size �les for editor, compile-file� Separate OS/machine/vendor-speci�c implemen-tations
88

5. Programming in the LargeUsing Comments E�ectivelyUse comments to/for:� Explain philosophy. Don't just document de-tails; also document philosophy, motivation, andmetaphors that provide a framework for under-standing the overall structure of the code.� O�er examples. Sometimes an example is wortha pile of documentation.� Have conversations with other developers! Ina collaborative project, you can sometimes ask aquestion just by putting it in the source. You maycome back to �nd it answered. Leave the questionand the answer for others who might later wonder,too.� Maintain your \to do" list. Put a special markeron comments that you want to return to later: ???or !!!; maybe use !!!! for higher priority. Someprojects keep to do lists and change logs in �lesthat are separate from the source code.(defun factorial (n);; !!! What about negative numbers? --Joe 03-Aug-93;; !!! And what about non-numbers?? -Bill 08-Aug-93(if (= n 0) 1(* n (factorial (- n 1))))) 89

5. Programming in the LargeDocumentation: Say What You MeanQ: Do you ever use comments when you write code?\Rarely, except at the beginning of procedures, andthen I only comment on the data structure. I don'tcomments on the code itself because I feel that prop-erly written code is very self-documented." { GaryKildall\I �gure there are two types of comments: one is ex-plaining the obvious, and those are worse than worth-less, the other kind is when you explain really involved,convoluted code. Well. I always try to avoid convo-luted code. I try to program really strong, clear, cleancode, even if it makes an extra �ve lines. I am almostof the opinion that the more comments you need, theworse your program is and something is wrong with it."{ Wayne Ratli�\Don't comment bad code|rewrite it." { Kernighan& Plauger� Describe the purpose and structure of system� Describe each �le� Describe each package� Documentation strings for all functions� Consider automatic tools (manual)� Make code, not comments 90

5. Programming in the LargeDocumentation: Over-commentingThese 32-lines must document a major system:; ==;; describe; --------;; arguments : snepsul-exp - <snepsul-exp>;; returns : <node set>;; description : This calls "sneval" to evaluate "snepsul-exp" to; get the desired <node set>.; It prints the description of each <node> in the; <node set> that has not yet been described during; the process; the description includes the; description of all <node>s dominated by the <node>.; It returns the <node set>.;; implementation: Stores the <node>s which have already been described; in "describe-nodes".; Before tracing the description of a <node>, it; checks whether the <node> was already been described; to avoid describing the same <node> repeatedly.; The variable "describe-nodes" is updated by "des1".;; side-effects : Prints the <node>'s descriptions.;; written: CCC 07/28/83; modified: CCC 09/26/83; ejm 10/10/83; njm 09/28/88; njm 4/27/8991

5. Programming in the LargeDocumentation: Over-commenting(defmacro describe (&rest snepsul-exp)`(let* ((crntct (processcontextdescr ',snepsul-exp))(ns (in-context.ns (nseval (getsndescr',snepsul-exp))crntct))(described-nodes (new.ns))(full nil))(declare (special crntct described-nodes full))(terpri)(mapc #'(lambda (n)(if (not (ismemb.ns n described-nodes))(PP-nodetree (des1 n))))ns)(terpri)(values ns crntct)))Problems:� Documentation too long; lose big picture� Documentation is wrong: describe(d)-nodes.� Documentation is ine�ective: no doc string� Documentation is redundant (arglist)� Bad idea to shadow Lisp's describe function� Need function that is separate from macro� Abbreviations are obscure 92

5. Programming in the LargeDocumentation: CommentingBetter:This doesn't handle crntct (whatever that is)(defmacro desc (&rest snepsul-exp)"Describe the node referred to by this expression.This macro is intended as an interactive debugging tool;use the function describe-node-set from a program."`(describe-node-set (exp->node-set ',snepsul-exp)))(defun describe-node-set (node-set)"Print all the nodes in this node set.";; Accumulate described-nodes to weed out duplicates.(let ((described-nodes (new-node-set)))(terpri)(dolist (node node-set)(unless (is-member-node-set node described-nodes);; des1 adds nodes to described-nodes(pp-nodetree (des1 node described-nodes))))(terpri)node-set)) 93

5. Programming in the LargePortabilityMake your program run well in the environment(s) youuse.But be aware that you or someone else may want touse it in another environment someday.� Use #+feature and #-feature� Isolate implementation-dependent parts.� Maintain one source and multiple binaries� Evolve towards dpANS CLImplement missing features if needed� Be aware of vendor-speci�c extensions
94

5. Programming in the LargeForeign Function InterfaceLarge programs often have to interface with other pro-grams written in other languages. Unfortunately, thereis no standard for this.� Learn your vendor's foreign interface� Try to minimize exchange of data� Beware of areas that cause problems:Memory managementSignal handling
95

6. MiscellaneousMean what you say� Don't mislead the readerAnticipate reader's misunderstandings� Use the right level of speci�city� Be careful with declarationsIncorrect declarations can break code� One-to-one correspondenceBad declaration: only made-up example(defun lookup (name)(declare (type string name))(if (null name)nil(or (gethash name *symbol-table*)(make-symbol-entry name))))Should be (declare (type (or string null) name))96

6. MiscellaneousNaming Conventions: Be ConsistentBe consistent in names:� Be consistent with capitalizationmost prefer like-this, not LikeThis� *special-variable*� +constant+ (or some convention)� Dylan uses <class>� Consider structure.slot� -p or ?; ! or n; -> or -to-� verb-object: delete-fileobject-attribute: integer-lengthcompare name-file and file-namedon't use object-verb or attribute-object!� Order arguments consistently� Distinguish internal and external functionsDon't mix &optional and &key; use carefully1 or 2 &optional args (Dylan 0)Use keywords consistently (key, test, end) 97

6. MiscellaneousNaming Conventions: Choose Names WiselyChoose Names wisely:� Minimize abbreviationsMost words have many possible abbreviations butonly one correct spelling. Spell out names so theyare easier to read, remember, and �nd.Some possible exceptions: char, demo, intro, andparen. These words are becoming almost like realwords in English. A good test (for native Englishspeakers) is: Would you say the word aloud inconversation? Our earlier example with crntct andprocesscontextdescr wouldn't pass this test.� Don't shadow a local variable with another.� Clearly show variables that are updated.� Avoid ambiguous names; Use previous or finalinstead of last. 98

6. MiscellaneousNotational Tricks: Parens in Column 0Most text editors treat a left paren in column 0 as thestart of a top-level expression. A paren inside a stringin column 0 may confuse the editor unless you providea backslash:(defun factorial (n)"Compute the factorial of an integer.\(don't worry about non-integer args)."(if (= n 0) 1(* n (factorial (- n 1)))))Many text editors will treat a "(def" in column 0 as ade�nition, but not a "(def" in other columns. So youmay need to do this:(progn(defun foo ...)(defun bar ...)) 99

6. MiscellaneousMulti-Line StringsIn case of a multi-line string as a literal constant, suchas:(defun find-subject-line (message-header-string)(search "Subject:" message-header-string))consider instead using read-time evaluation and a callto format:(defun find-subject-line (message-header-string)(search #.(format nil "~%Subject:") message-header-string))Where the same string is used many times, considerusing a global variable or named constant:(defparameter *subject-marker* (format nil "~%Subject:"))(defun find-subject-line (message-header-string)(search *subject-marker* message-header-string))100

6. MiscellaneousMulti-Line Strings (cont'd)For long format strings, you can indent the continua-tion lines with <Return> or @<Return>. The followingtwo forms do the same thing:(format t "~&This is a long string.~@This is more of that string.")This is a long string.This is more of that string.(format t "~&This is a long string.~~%This is more of that string.")This is a long string.This is more of that string.The latter syntax permits you to indent a �xed amounteasily:(format t "~&This is a long string.~~% This is more of that string, indented by one.")This is a long string.This is more of that string, indented by one.101

6. MiscellaneousNotational Tricks: Multi-Line CommentsAvoid using #| and |# in strings, since it will confuse anylater attempt to comment out such a string. Again, abackslash helps:Good:(defun begin-comment () (write-string "#\|"))(defun end-comment () (write-string "|\#"))This means that you can later comment out sectionscontaining these strings without editing the strings them-selves.If your editor provides support (comment-region anduncomment-region commands) it is better to use ex-plicit ;; comments. That way the reader will never getconfused about which sections have been commentedout.
102

6. MiscellaneousSome Red FlagsThe following situations are \red
ags." They are of-ten symptoms of problems|even though technicallymost of them do happen in completely legitimate sit-uations as well. If you see one of these red
ags, youdo not automatically have a problem in your code, butyou should still proceed cautiously:� Any use of eval� Any use of gentemp *� Any use of append� The absence of an &environment parameter in amacro that uses setf or calls macroexpand.� Writing a condition handler for type error(including use of ignore-errors).� Any use of the c...r functions except caar, cad...r,(where the \..." is all d's).* No known good uses. 103

6. MiscellaneousAvoid Common MistakesGood style involves avoiding mistakes.� Always prompt for input(Or user won't know what's happening)� Understand defvar and defparameter� Understand flet and labels� Understand multiple values� Understand macros (shown above)� Recompile after changing macros orinline functions� Use #'(lambda ...), not `(lambda ...)� Remember #'f is just (function f)� Use :test #'equal as needed� Make sure declarations are e�ective� Have a policy for destructive functions 104

6. MiscellaneousDestructive FunctionsHave a policy for destructive functions:� Most programs use destructive updates when theycan prove the arguments are not needed elsewhere(as when a function nconc's partial results).� Otherwise, assume that arguments cannot be al-tered� Assume that results will not be altered� Major interfaces often make copies of results theypass out, just to be safe.� Note that generation scavenging GC can be sloweddown by destructive updates.
105

6. MiscellaneousMinor MistakesBad:(defun combine-indep-lambdas (arc-exp)(apply #'*(mapcar #'eval-arc-exp (cdr arc-exp))))� apply may exceed call-arguments-limit� mapcar generates garbage� cdr violates data abstractionGood:(reduce #'* (in-arcs arc-exp) :key #'eval-arc-exp)Learn to use accumulators:(defun product (numbers &optional (key #'identity)(accum 1))"Like (reduce #'* numbers), but bails out earlywhen a zero is found."(if (null numbers)accum(let ((term (funcall key (first numbers))))(if (= term 0)0(product (rest numbers) key (* accum term))))Consider Series:(collect-fn 'number (constantly 1) #'* numbers)106

6. MiscellaneousMulti-Tasking and Multi-ProcessingMulti-Tasking (Time Slicing)It is reasonable to spend time structuring your codeto work well in the face of multi-tasking. Many com-mercial Lisp implementations have this even thoughthere is not yet a portable standard. It �ts in well withexisting language semantics.� Watch out for global state like setq and propertylists.� Synchronize processes with without-interrupts,without-aborts, without-preemption, etc. Consultimplementation-speci�c documentation for the setof available operators and learn how they di�er.Multi-Processing (True Parallelism)Think about true parallelism, but don't waste a lot oftime structuring your programs to work well if thingssuddenly become parallelized. Making a sequential pro-gram into a parallel one is a non-trivial change thatwon't happen by accident (e.g., due to some overnightchange in Common Lisp's semantics). It will take awhole new language to support this; you'll have timeto prepare. 107

6. MiscellaneousExpect The UnexpectedMurphy's Law\If something can go wrong, it will."Don't omit checking for things because you're suresomething will never happen unless you're very sure.: : : And even then, don't omit them anyway. It is su�-ciently commonplace to get errors from systems saying\This can't happen" that it's clear that people are notalways as brilliant as they think.
108

6. MiscellaneousRead Other People's Code\You need to study other people's work. Their ap-proaches to problem solving and the tools they usegive you a fresh way to look at your own work." {Gary Kildall\I've learned a lot from looking at other people's pro-grams." { Jonathan Sachs\I still think that one of the �nest tests of programmingability is to hand the programmer about 30 pages ofcode and see how quickly he can read through andunderstand it." { Bill Gates\The best way to prepare [to be a programmer] is towrite programs, and to study great programs that otherpeople have written. In my case, I went to the garbagecans at the Computer Science Center and I �shed outlistings of their operating system." { Bill Gates\You've got to be willing to read other people's code,then write your own, then have other people reviewyour code." { Bill Gates� Lisp Machine Operating System� Internet FTP sites (comp.lang.lisp FAQ)� CMU CL Compiler and Utilities� Macintosh Common Lisp examples 109

6. MiscellaneousExample: deftableTask: Make it easy to de�ne and use tables.� Like defstruct� Should be fast: inline functions� Should handle one or multiple tables� CLOS?� Operations? Arguments and return value(s)?� Default values? Mutated or returned?Separation between user and implementor code, withsupport for both.� Way to de�ne new table implementations� Naming; packages?� Documented limitations?� Instrumentation?� Automatic selection?Lessons learned:� Capture common abstractions: tables, others?� Complex macros can be designed with a little care� Consider the possibility of extension 110

6. MiscellaneousPrototypeLisp allows you to develop prototypes easily.\Plan to throw one away; you will, anyhow." { FredBrooks\I think a lot before I do anything, and once I do some-thing, I'm not afraid to throw it away. It's very impor-tant that a programmer be able to look back at a pieceof code like a bad chapter in a book and scrap it with-out looking back." { John Warnock\Don't bind early; don't ever make decisions earlierthan you have to. Stay an order of magnitude moregeneral than you think you need, because you will endup needing it in the long term. Get something workingvery quickly and then be able to throw it away." { JohnWarnock\So I tend to write a few lines at a time and try it out,get it to work, then write a few more lines. I try todo the least amount of work per iteration to make realsubstantive change." { Wayne Ratli�\1-2-3 began with a working program, and it continuedto be a working program throughout its development."{ Jonathan Sachs 111

6. MiscellaneousOther IdeasLearn to type. If you type less than 60 wpm, you'reholding yourself back.\Also, while you're working hard on a complicated pro-gram, it's important to exercise. The lack of physicalexercise does most programmers in. It causes a loss ofmental acuity." { John PageQ: What does it take to become a great programmer?\What does it take to be good at anything? What doesit take to be a good writer? Someone who's good is acombination of two factors: an accidental mental cor-respondence to the needs of the disciplines, combinedwith a mental ability to not be stupid. That's a rarecombination, but it's not at all mystical. A good pro-grammer must enjoy programming and be interestedin it, so he will try to learn more. A good programmeralso needs an aesthetic sense, combined with a guiltcomplex, and a keen awareness of when to violate thataesthetic sense. The guilt complex forces him to workharder to improve the program and to bring it more inline with the aesthetic sense." { Bob Frankston112

6. MiscellaneousRecommended BooksIntroductions to Common Lisp� Robert Wilensky Common LISPcraft� Deborah G. Tatar A Programmer's Guide to Com-mon Lisp� Rodney A. Brooks. Programming in Common LispReferences and a Must-Have� Guy L. Steele Common Lisp: The Language, 2ndEdition� ANSI Draft Proposed Common Lisp Standard� Harold Abelson and Gerald Jay Sussman, with JulieSussman. Structure and Interpretation of Com-puter Programs (Scheme)
113

6. MiscellaneousRecommended BooksMore Advanced:� Patrick H. Winston and Berthold K. P. Horn. LISP,3rd edition.� Wade L. Hennessey Common Lisp� Sonya E. Keene Object-Oriented Programming inCommon Lisp: A Programmer's Guide to CLOS� Eugene Charniak, Christopher K. Riesbeck, DrewV. McDermott and James R. Meehan. Arti�cialIntelligence Programming, 2nd edition.� Peter Norvig. Paradigms of AI Programming: CaseStudies in Common LispPeriodicals:� LISP Pointers. (ACM SIGPLAN) Since 1987.� LISP and Symbolic Computation. Since 1989.� Proceedings of the biannual ACM Lisp and Func-tional Programming Conference. Since 1980.114

6. MiscellaneousQuotesQuotes from Programmers at Work, Susan Lammers,Microsoft Press, 1989.� Bob Frankston: Software Arts VisiCalc; Lotus� Bill Gates: Altair BASIC; Microsoft� Gary Kildall: Digital Research CP/M� Scott Kim: Stanford, Xerox; Inversions� Butler Lampson: Xerox Ethernet, Alto, Dorado,Star, Mesa; DEC� John Page: HP; Software Publishing PFS:FILE� Wayne Ratli�: NASA; Ashton-Tate dBASE II� Jonathan Sachs: MIT; Lotus 1-2-3� Charles Simonyi: Xerox Bravo; Microsoft Word,Excel� John Warnock: NASA; Xerox; Adobe PostScript115

6. MiscellaneousQuotesOther quotes:� Harold Abelson: MIT; SICP; Logo� Judy Anderson: Harlequin, Inc.� Fred Brooks: IBM 360 architect, now at UNC� Bear Bryant: Alabama football coach� Brian Kernighan & P.J. Plauger: Bell Labs UNIX� David McDonald: MIT, UMass natural languagegeneration� Guy Steele: Thinking Machines; Scheme; CLtL� Gerald Sussman: MIT; SICP; Scheme� Deborah Tatar: DEC; Xerox; author� Niklaus Wirth: ETH Zurich; PascalAlmost all Bad Code examples are taken from publishedbooks and articles (whose authors should know better,but will remain anonymous). 116

