EECS 311: STL Set Algorithms |
Home Course Info Links Grades |
Lectures Newsgroup Homework Exams |
Perhaps the most confusing thing to keep straight about sets in the Standard Template Library is that the generic set algorithms are independent of the set container. That is, all the standard set operations, such as intersection, subset, and union, are defined a generic algorithms, and can be used on any sorted STL container. The set container just happens to be useful with these algorithms because it sorts itself automatically and cheaply.
The set container and its operations are summarized in the STL Summary.
Sets in mathematics have the following basic operations:
The mapping to the STL is pretty direct. Since "sets" for the generic set algorithms are really any sorted subrange of a container:
Membership can be handled by set::find() or with the generic algorithm binary_search(), which is for sorted vectors. Both are O(log n).
The remaining set algorithms have linear complexity. That is, an algorithm that takes two "sets" of size M and N will be O(M+N)
The generic set algorithms have two forms, one with just the "sets," and another with an extra binary predicate argument. The first form uses operator=() to determine element equality. The second form uses the equality predicate you pass it.
Caution: the equality predicate is applied only to elments deemed "equal" by the "less than" predicate used to sort the set, that is to X and Y only if X is not less than Y and Y is not less than X.
includes returns true if the first "set" includes the second.
bool includes(InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2); bool includes(InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, Predicate pred);
set_union copies the union of both input ranges into the ouput iterator and returns the end of the result.
OutputIterator set_union (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result); OutputIterator set_union (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result, Predicate pred);
set_intersection copies the intersection of both input ranges into the ouput iterator and returns the end of the result.
OutputIterator set_intersection (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result); OutputIterator set_intersection (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result, Predicate pred);
set_difference copies the elements in the first range not in the second range into the ouput iterator and returns the end of the result.
OutputIterator set_difference (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result); OutputIterator set_difference (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result, Predicate pred);
set_symmetric_difference copies the elements in each range not in the other range into the ouput iterator and returns the end of the result.
OutputIterator set_symmetric_difference (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result); OutputIterator set_symmetric_difference (InputIterator first1, InputIterator last1, InputIterator first2, InputIterator last2, OutputIterator result, Predicate pred);
Comments? Send mail to c-riesbeck@northwestern.edu.